FISEVIER

Contents lists available at ScienceDirect

#### Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor



### Graphical Abstracts/J. Fluorine Chem. 179 (2015) vii-xiv

Véronique Gouverneur

**Graham Sandford** 

Durham University, UK

#### Chemically oxidative fluorination with fluoride ions

Chuanfa Ni, Fanzhou Jiang, Yuwen Zeng, Jinbo Hu

Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China

- Challenges and advantages associated with chemically oxidative fluorination are discussed.
- The recent developments on chemically oxidative fluorination are presented. Applications of chemically oxidative fluorination on <sup>18</sup>F labeling are highlighted.

J. Fluorine Chem., 179 (2015) 3

I. Fluorine Chem., 179 (2015) 1



# Review of recent advances in C—F bond activation of aliphatic fluorides

Qian Shena, Yan-Gen Huanga, Chao Liub, Ji-Chang Xiaob, Qing-Yun Chenb, Yong Guob

<sup>a</sup>College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, China

<sup>b</sup>Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China

• This review covers compounds with a C−F bond, CF<sub>2</sub> or CF<sub>3</sub>. • Various organic compounds are synthesized through C−F bond activation. • Aliphatic fluorides could be activated by Lewis

acid, Brønsted superacids or hydrogen bonding. • The cleavage of C–F bond could be mediated by transition-metal or rare earth metal.

• Dehydrofluorination by a base or  $S_N 2'$  displacement by a nucleophile could be a method for leaving of a fluoride.

J. Fluorine Chem., 179 (2015) 14



#### viii

Synthesis and functionalization of (*Z*)-1,2-difluoro-1-tri-*n*-butylstannyl-1,4-pentadiene

J. Fluorine Chem., 179 (2015) 23

Sandra Lukaszewski-Rose, Donald J. Burton

Department of Chemistry, The University of Iowa, Iowa City, IA 52242, USA

• Coupling **2** with substituted aryl iodides/P(PPh<sub>3</sub>)<sub>4</sub>/Cu(I)I gave the arylated products. • Coupling **2** with vinyl iodides stereospecifically gave the trienyl products. • Hydroboration/oxidation of **2** gave the corresponding (Z)-HOCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CF=CFSn(n-Bu)<sub>3</sub>. • Coupling **11** with substituted aryl halides gave the diffunctionalized olefin.

#### Reactions of 1-fluoroalkyl triflates with nucleophiles and bases

J. Fluorine Chem., 179 (2015) 33

William R. Dolbier Jr., Masamune Okamoto

Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, United States

- A series of 1-fluoroalkyl triflates are prepared and their reactions n-Octyl—CHF(OTf) with a large variety of nucleophiles described. The preparation and isolation of a series of 1-fluoroalkyl triflates from aldehydes is described.  $X = {^{\text{-}}}\text{CN}, {^{\text{-}}}\text{N}_3$
- ullet 1-Fluoroalkyl triflates are highly reactive with nucleophiles. ullet Reactions of 1-fluoroalkyl triflates with a series of nucleophiles are described.
- 1-Fluoro-*n*-alkyl triflates do not undergo elimination reactions.

n-Octyl—CHF(OTf)  $\xrightarrow{X^- \text{ or } X:} n$ -Octyl—CHFX solvent, rt, 17 h

 $X = {^{\text{-}}}CN, {^{\text{-}}}N_3, {^{\text{-}}}OAc, Ph_3P, benzimidazole, halide, etc.$ 

#### Metal free electrophilic fluoro-cyclization of unsaturated *N*-hydroxyand N-acetoxyamides with N-F reagents

J. Fluorine Chem., 179 (2015) 42

Lyudmila F. Lourie<sup>a</sup>, Yurii A. Serguchev<sup>a</sup>, Anton V. Bentya<sup>a</sup>, Maxim V. Ponomarenko<sup>a,b</sup>, Eduard B. Rusanov<sup>a</sup>, Michail V. Vovk<sup>a</sup>, Andrey A. Fokin<sup>c</sup>, Nikolai V. Ignat'ev<sup>d</sup>

<sup>a</sup>Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanskaya Str., 02094 Kiev, Ukraine

<sup>b</sup>School of Engineering and Science, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany <sup>c</sup>Department of Organic Chemistry, Kiev Polytechnic Institute, pr. Pobedy 37, 03056 Kiev, Ukraine

<sup>d</sup>Merck, PM-APR-FT, Frankfurter Str. 250, D-64271 Darmstadt, Germany

• Metal-free electrophilic fluoro-cyclizations of the unsaturated *N*-hydroxy- and *N*-acetoxyamides leads to cyclic imidates. • The stereoselectivity of fluoro-cyclization depends on the fluorinating reagent and solvent. • F-TEDA-FAP provides better stereoselectivity.

# Synthesis of trifluoromethyl ethers and difluoro(methylthio)methyl ethers by the reaction of dithiocarbonates with IF<sub>5</sub>-pyridine-HF

J. Fluorine Chem., 179 (2015) 48

Toshiya Inoue, Chiaki Fuse, Shoji Hara

Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan

- $\bullet$  Difluoro(methylthio)methyl ether of phenol and alcohol was synthesized.
- A stable fluorination reagent, IF<sub>5</sub>-pyridine-HF, was used for the reaction.
- $\bullet$  Trifluoromethyl ether was also synthesized from the dithiocarbonate.  $\bullet$  IF<sub>5</sub>-pyridine-HF and Et<sub>3</sub>N-6HF were used for the synthesis of trifluoromethyl ether.

$$\begin{array}{c} \text{RO-C-SMe} \xrightarrow{\text{IF}_5\text{-pyridine-HF}} & \text{R-OCF}_2\text{SMe} & \text{or} & \text{R-OCF}_3 \\ \text{I} & & & \\ \text{S} & & \text{R = alkyl, aryl} \end{array}$$

#### Download English Version:

# https://daneshyari.com/en/article/1313715

Download Persian Version:

https://daneshyari.com/article/1313715

Daneshyari.com