FISEVIER

Contents lists available at ScienceDirect

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

Mono- and dinitration of pentafluorosulfanylbenzenes with $[NO_2][BF_4]$, and substrate selectivity (PhSF₅ vs PhCF₃ and PhSF₅ vs PhNO₂) in competitive nitration

Takao Okazaki ^{a,b}, Kenneth K. Laali ^{a,*}

- ^a Department of Chemistry, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
- ^b Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu 514-8507, Japan

ARTICLE INFO

Article history: Received 21 May 2014 Received in revised form 19 June 2014 Accepted 24 June 2014 Available online 2 July 2014

Keywords: SF₅-aromatics Mono- and dinitration NO₂*BF₄-/TfOH Competitive nitration Substrate selectivity Isodesmic proton transfer

ABSTRACT

PhSF₅ **1** reacts with NO₂*BF₄-/TfOH in CH₂Cl₂ (DCM) at room temperature to give 1-nitro-3-(pentafluorosulfanyl)benzene **2** in near quantitative yield. The dinitro derivative **4** is synthesized from **2** by reaction with NO₂*BF₄-/TfOH at 70 °C. The *p*-MeC₆H₄SF₅ is mononitrated at room temperature with NO₂*BF₄-/DCM and dinitrated with NO₂*BF₄-/TfOH. Substrate selectivity (k_{PhSF_5}/k_{RPh}) in competitive nitration for PhSF₅/PhCF₃ and PhSF₅/PhNO₂ with NO₂*BF₄- in DCM at room temperature was determined at 21.3 and ~1 respectively. Relative stability of the corresponding benzenium ions were gauged by DFT from the isodesmic proton transfer reaction SF₅-C₆H₆* + R-C₆H₅ \rightarrow SF₅-C₆H₆* (R = CF₃ and NO₂). These studies indicate that reactivity of ArSF₅ in S_EAr is similar to ArNO₂.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Synthesis of SF₅-aromatics continues to be a very active research area and considerable research effort is being directed to the development of methodology to synthesize SF₅-bearing building blocks for elaboration into pharmaceuticals, agrochemicals, and materials [1,2]. Incorporation of SF₅ group(s) imparts favorable physical and chemical characteristics including thermal, hydrolytic, and chemical stability, high density, high electronegativity, and high lipophilicity. Whereas a great majority of the reported methods for the synthesis of SF₅-aromatics begin with nitro-pentafluorosulfanyl benzenes [3–6], access to these compounds has been a major impeding factor to wider synthetic application [7].

The m-nitro and p-nitro derivatives have been accessible via the reaction of isomeric bis(nitrophenyl)disulfides with F_2/N_2 [8] but development of alternative, more practical, methods to elemental fluorination are highly desirable. To that end, Sergeeva and Dolbier [9] reported direct electrophilic nitration of PhSF₅ with $H_2SO_4/HNO_3/TFA$ in 87% yield. Preparation of the 3,5-dinitro-SF₅-benzene

was disclosed by Umemoto and Chika in a patent [10]. The p-tolyl-SF₅ was dinitrated with HNO₃/fuming H₂SO₄, then side-chain oxidation and decarboxylation furnished the 3,5-dinitro-SF₅-benzene [10].

In continuation of our earlier efforts directed toward the development of new methods for the synthesis of SF₅-aromatics [11] and our long standing interest in aromatic nitration [12] we report an alternative and convenient electrophilic method for the synthesis of the nitro-derivatives by using nitronium salt. Competitive nitration (PhSF₅ vs PhCF₃ and PhSF₅ vs PhNO₂) with NO₂+BF₄ were also performed to gauge relative reactivity, and relative benzenium ion stabilities were calculated by DFT via isodesmic reactions.

2. Results and discussion

Mechanistic and synthetic aspects of aromatic nitration were extensively studied by Olah et al. over several decades [13]. Experimental and theoretical studies firmly established the concept of protosolvation of the nitronium ion leading to increased reactivity [14,15].

Considering the strongly deactivating effect of SF₅ (σ_p = +0.68) [1] nitration with the nitronium salt and protosolvation with triflic

^{*} Corresponding author. Tel.: +1 904 620 1503; fax: +1 904 620 3535. E-mail address: Kenneth.laali@UNF.edu (K.K. Laali).

Table 1Nitration of PhSF₅ with nitronium tetrafluoroborate under various conditions.

$$NO_2BF_4$$
 NO_2BF_4
 NO_2

Solvent	NO ₂ BF ₄	Temp.	Time	2 (isolated yield, %) ^a
CH ₂ Cl ₂	1.7 eq	rt	1d	61 ^b
CH ₂ Cl ₂	1.1 eq	rt	18 h	44 ^b
TfOH/CH ₂ Cl ₂	1.1 eq	rt	1d	100 ^c
TfOH (neat)	1.5 eq	rt	14 h	66 ^b
CH ₂ Cl ₂	8.3 eq	then reflux for 3 h		83 ^c
TfOH (neat)	15 eq	rt for 4 d; 40°C for 5 h: 70°C for 14 h		

$$SF_5$$
 SF_5 SO_2F NO_2 O_2N NO_2 SO_2F SO_2F

(82:9:9 by NMR; before chromatographic isolation)

- ^a Isolated yield after SiO₂ column chromatography.
- b Traces of the p-nitro isomer was detected.
- ^c Crude product was found to be pure except for a trace of the *p*-nitro isomer.

acid were considered as attractive direct one-pot methods for $ArSF_5$ nitration.

Nitration of PhSF₅ **1** with nitronium tetrafluoroborate was carried out under heterogeneous conditions in DCM at room temperature and after 1 day 1-nitro-3-(pentafluorosulfanyl)benzene **2** was obtained in 61% yield (Table 1). A small amount of 1-nitro-4-(pentafluorosulfanyl)benzene **3** was detected in the product mixture by 1 H NMR analysis. Nitration with 1.1 equiv. of NO₂BF₄ in TfOH/DCM resulted in near quantitative conversion to **2**, whereas nitration in neat TfOH at room temperature gave **2** in 66% yield. Both **1** and **2** were found to be stable in TfOH (no side reactions).

The use of excess NO_2BF_4 in DCM without TfOH resulted only in **2**, and refluxing in DCM after 3 h showed just a trace of the dinitroderivative **4**. Increasing the temperature to 70 °C gave a mixture of **2**, **4**, and **5** in 82:9:9 ratio by 1H NMR (Table 1).

Nitration of **2** in TfOH at 70 °C after 14 days (Scheme 1) gave a mixture of **4**, **6**, and **5** (Scheme 1) in 85:10:5 ratio by ¹H NMR. Silica gel column chromatographic separation afforded pure **4** in 17% yield, **6** in 2% yield, and **5** in 1% yield.

Surprisingly, nitration of the mono-nitro derivative $\mathbf{2}$ with $\mathrm{NO_2}^+\mathrm{BF_4}^-$ in CH₂Cl-CH₂Cl (DCE) as solvent under reflux or in TfOH/DCE at 70 °C were unsuccessful and $\mathbf{2}$ was recovered (Table S1 in supplementary information).

Nitration of 1-methyl-4-(pentafluorosulfanyl)benzene **7** with NO_2BF_4 in DCM at room temperature gave the mononitro derivative 1-methyl-2-nitro-4-(pentafluorosulfanyl)benzene **8** in 89% yield (Table 2). Use of excess amounts of NO_2BF_4 in DCE as solvent at 70 °C did not lead to dinitration and the mononitrated product **8** was obtained in 89% yield.

Heating in neat TfOH at 70 °C with excess nitronium tetrafluoroborate furnished the desired 2-methyl-1,3-dinitro-5-(pentafluorosulfanyl)benzene **9**, along with 5-(fluorosulfonyl)-2-methyl-1,3-dinitrobenzene **10**, and 1-(fluorosulfonyl)-4-methylbenzene **11** in 77:19:4 ratio by ¹H NMR. Silica gel column chromatography purification afforded pure **9** in 47% isolated yield and 5-(fluorosulfonyl)-2-methyl-1,3-dinitrobenzene **10** in 18% yield.

3. Substrate selectivity in competitive nitration

The $-SF_5$, $-NO_2$, and $-CF_3$ groups represent the extreme examples of deactivating *meta* directing substitutents in S_EAr chemistry (σ_m and σ_p are 0.61 and 0.68 for SF_5 , 0.71 and 0.78 for NO_2 , and 0.43 and 0.54 for CF_3) [16].

In the context of the present nitration study it was relevant to measure substrate selectivity for $PhSF_5$ vs $PhNO_2$ and $PhSF_5$ versus $PhCF_2$.

Nitronium tetrafluoroborate was added to 1:1 mixture of substrates in DCM, and after 8 h mixing at room temperature an aliquot was withdrawn, diluted with CDCl₃ and examined directly by NMR. Substrate selectivity was derived based on the ratio of the corresponding nitro-products (Tables 3 and 4).

In competitive nitration of PhSF₅ vs PhCF₃ (Table 3) the $C_6H_5SF_5/NO_2-C_6H_4-SF_5$ ratio was 87:13 whereas PhCF₃/NO₂- $C_6H_4-CF_3$ was 5:95, consistent with stronger deactivating effect of the SF₅ substituent, leading to a ratio of nitration rate constants $k_{PhCF_3}/k_{PhSF_5}=21.3$. After 1 day, the PhCF₃ was completely nitrated.

In competitive nitration of PhSF₅ vs PhNO₂ after 7 h the C₆H₅–SF₅/SF₅–C₆H₄(NO₂) and PhNO₂/C₆H₄(NO₂)₂ ratios were about equal (97:3) and after 1 day the ratios were 87:13 and 91:9. The data suggests a $k_{\text{PhNO}_3}/k_{\text{PhSF}_5} = \sim 1$ showing similar deactivating effects.

Focusing on benzenium ion stabilities, and as an extension of the substrate selectivity measurements, relative energies of the *meta* protonated benzenium ions were calculated from the isodesmic reactions (Eq. (1)) with R = H, NO₂ and CF₃ by the DFT method at various levels and by incorporating solvent effect (PCM) (supplementary information).

(85: 10: 5 by NMR before chromatographic isolation)

Scheme 1. Dinitration of PhSF₅ with nitronium tetrafluoroborate in TfOH.

Download English Version:

https://daneshyari.com/en/article/1313984

Download Persian Version:

https://daneshyari.com/article/1313984

Daneshyari.com