Contents lists available at SciVerse ScienceDirect

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

A facile preparation of 2-bromodifluoromethyl benzo-1,3-diazoles and its application in the synthesis of *gem*-difluoromethylene linked aryl ether compounds

Haizhen Jiang^a, Shijie Yuan^a, Yeshan Cai^a, Wen Wan^a, Shizheng Zhu^{b,*}, Jian Hao^{a,b,**}

^a Department of Chemistry, Shanghai University, Shanghai 200444, China

^b Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

ARTICLE INFO

Article history: Received 25 June 2011 Received in revised form 5 August 2011 Accepted 14 August 2011 Available online 22 August 2011

Keywords: 2-Bromodifluoromethyl benzo-1,3diazolines Building block gem-Difluoromethylene Aryl ether This paper is dedicated to Professor Wei-Yuan Huang on the occasion of his 90th birthday.

1. Introduction

gem-Difluoromethylene linked aryl ether compounds have attracted substantial attention due to their wide range of applications in pharmaceuticals, agrochemicals and electronic materials, such as enzyme inhibitors, anti-HIV agents, potassium channel activators, and smectic phase liquid crystals [1]. The most common methods used for the synthesis of *gem*-difluoromethylene aryl ether compounds are the approaches *via* the CF₂-containing building block [2]. It has been of great interest to develop and effectively use the CF₂Br-containing heterocyclic building blocks for the construction of *gem*-difluoromethylene linked heterocyclic-containing aryl ethers. However, till present, only few papers about synthesis and applications of CF₂Br-containing heterocyclic building blocks have been reported [3]. Herein, we present the results on a facile synthesis of 2-CF₂Br-containing benzo-1,3-diazolic building blocks **2** *via* a one-pot

ABSTRACT

A facile preparation of 2-bromodifluoromethyl benzo-1,3-diazoles as novel CF_2Br -containing heterocyclic building blocks has been developed through a one-pot process of reaction of 2-OH, 2-SH, or 2-NH₂ substituted aniline with bromodifluoroacetic acid in the presence of 3 molar equivalents of CBr_4 and Ph_3P in refluxing toluene. 2-Bromodifluoromethyl benzo-1,3-thiazole (**2b**) was successfully utilized in the preparation of *gem*-difluoromethylene linked aryl ether compounds through the reaction with phenolates or thiophenolate in DMF in good yields.

© 2011 Elsevier B.V. All rights reserved.

reaction of 2-OH, 2-SH or 2-NH₂ substituted aniline with bromodifluoroacetic acid in the presence of 3 molar equivalents of CBr₄ and Ph₃P in refluxing toluene, which involves the formation of CF₂Br-containing imidoyl bromide intermediate and subsequent intramolecular ring-closure reaction. In addition, 2-CF₂Br-containing benzo-1,3-thiazolic building block **2b** was successfully applied to the synthesis of *gem*-difluoromethylene linked benzo-1,3thiazole-containing aryl ethers **3** through the reaction with phenolates or thiophenolate in a suspension of sodium hydride in DMF *via* a process of S_{RN}1 (Scheme 1).

2. Results and discussion

CF₂Br-containing building blocks have been widely used to introduce a CF₂ unit into organic molecules *via* Reformatsky reaction, aldol reaction, cross-coupling reaction or radical addition reaction, *etc.* [4] on the basis of high reactivity of the C–Br bond in CF₂Br group, which could easily be attacked by an electrophile or a radical. However, such high reactivity of C–Br bond makes the way of synthesis of CF₂Br-containing building blocks greatly differ from those for CF₃ and CF₂H-containing building blocks. The development of the synthetic method of CF₂Br-containing building blocks, still encountered great challenges. The first example of synthesis of 2-

^{*} Corresponding author at: Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China. Tel.: +86 21 54925185.

^{**} Corresponding author at: Department of Chemistry, Shanghai University, Shanghai 200444, China. Tel.: +86 21 66133380; fax: +86 21 66133380.

E-mail addresses: zhusz@mail.sioc.ac.cn (S. Zhu), jhao@staff.shu.edu.cn (J. Hao).

^{0022-1139/\$ -} see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.jfluchem.2011.08.008

Scheme 1. Preparation of 2-bromodifluoromethyl benzo-1,3-diazoles and its application in the synthesis of gem-difluoromethylene linked aryl ethers.

Table 2

 Table 1

 Synthesis of 2-bromodifluoromethyl benzo-1,3-diazoles.

Entry	Reactant	Product	Reaction time (h)	Yield (%) ^a
1	OH 1a	CF ₂ Br 2a	8	85
2	SH 1b	S CF2Br 2b	24	65
3	NH ₂ NH ₂ 1c	N CF ₂ Br 2c	10	15 ^b

^a Isolated yield.

^b 1:2 molar ratio of bromodifluoro acetic acid to PPh₃/CBr₄.

bromodifluoromethyl benzo-1,3-oxazole was reported to be through a bromination of CF_2H group on the benzo-1,3-oxazole ring in the presence of excess amount of NBS. However, the bromination of CF_2H group through such radical process suffered from either low yield or long reaction time [5]. Thus, our attention was drawn back to modify the original Uneyama's preparation of fluorinated imidoyl halids. It was demonstrated that the reaction of 2-OH substituted aniline with bromodifluoroacetic acid in the presence of 3 molar equivalents of CBr_4 and Ph_3P in refluxing toluene initially led to the formation of bromodifluoromethyl substituted imidoyl bromide *in situ*, which further underwent intramolecular ring-closure reaction to form the desired 2bromodifluoromethyl benzo-1,3-oxazole product **2a** effectively [6]. This synthetic method is also suitable for other substrates, such as 2-SH or 2-NH₂ substituted aniline as listed Table 1.

This one-pot reaction involves a slow formation of imidoyl bromide intermediate (**4**) in the first step. Upon the formation of **4**, the subsequent intramolecular ring-closure reaction occurred *via* nucleophilic substitution of bromide by neighboring XH group under the promotion of Et₃N (Scheme 2). 2-OH Substituted aniline **1a** provided the desired product in better yield with shorter reaction time (entry 1, Table 1) in comparison with 2-SH aniline **1b** (entry 2, Table 1) as a substrate due to the electron-releasing characteristic of hydroxyl group which enriches the electron density of neighboring amino group to accelerate the formation of intermediate **4a** in the rate-determining step. However, 2-NH₂ substituted aniline provided a much lower yield under the same reaction conditions. The reaction could occur only when the

The reaction of 2-bromodifluoromethy	I benzothiazole 2b with phenolates.

Entry	ArYH	Product	Reaction time (h)	Conversion of 2b (%) ^a	Yield (%) ^b
1	ОН	3bd	22	85	65
2	O ₂ N OH	3be	22	80	73
3	Н3СО	3bf	20	83	64
4	ОН	3bg	24	90	78
5	OH	3bh	20	88	75
6	SH	3bi	20	83	62
7	CH ₃ H ₃ C N SH	3bj	36	-	-
8	N S	3bk	36	-	-

^a The conversions of **2b** were determined by ¹⁹F NMR analysis.

^b Isolated yield.

amounts of carbon tetrabromide and triphenylphosphine were decreased from 3 to 2 molar equivalents and the desired 2-bromodifluoromethyl benzo-1,3-imidazole (**2c**) was obtained in 15% yield. The reason could possibly be the existence of the further reaction of unprotected NH group of **2c** with the excess amount of PPh₃ and CBr₄ [7].

Scheme 2. Mechanism of formation of 2-bromodifluoromethyl benzo-1,3-diazoles.

Download English Version:

https://daneshyari.com/en/article/1314332

Download Persian Version:

https://daneshyari.com/article/1314332

Daneshyari.com