FISEVIER

Contents lists available at SciVerse ScienceDirect

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

Pd-catalyzed direct arylation of phenylpyrazole: Synthesis of fipronil derivatives with aryl boronic acids promoted by a stoichiometric amount of NIS

Ting Lv^a, Xiao-Hong Zhang^{a,*}, Jiang-Sheng Han^a, Ping Zhong^{a,b,**}

ARTICLE INFO

Article history:
Received 21 December 2011
Received in revised form 7 February 2012
Accepted 9 February 2012
Available online 21 February 2012

Keywords:
Palladium-catalyzed
Direct arylation
Phenylpyrazole
Fipronil derivatives
Trifluoromethyl group

ABSTRACT

The palladium-catalyzed direct arylation of phenylpyrazole with aryl boronic acid promoted by a stoichiometric amount of NIS has been reported. Several phenyl pyrazoles, especially for those with trifluoromethyl groups, can participate in the reaction, providing a series of fipronil derivatives of 4-arylphenylpyrazole with potential bioactivity in moderate to good yields. All the compounds were characterized by ¹H NMR, ¹³C NMR and HRMS spectroscopic techniques.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Phenyl pyrazole is an important class of heterocyclic compounds and has shown a wide range of biological activities [1]. In addition, phenyl pyrazole derivatives possessing fluorine-containing groups, for example, fipronil (I, Fig. 1) [5-amino-1-[2,6dichloro-4-(trifluoromethyl)-phenyl]-4-trifluoromethylsulfinyllH-pyrazole-3-carbonitrile] and ethiprole (II, Fig. 1), with 4-EtSO replacing with the 4-CF₃SO, are effective against a host of insect pests of crops including grass hoppers, boll weevils, rice insects, termites, houseflies, fruitflies and thrips [2]. The new analog of desulfinylethiprole (III, Fig. 1) was surprisingly found to have high insecticidal activity [3]. So we believe that 4-aryl-1-phenylpyrazole compounds (IV, Fig. 1) may have the same high insecticidal activity. However, there are relatively few reports for the synthesis of compounds IV [4], which was synthesized mainly via the reaction of 4-iodo-1-phenylpyrazole with arylboronic acid [5]. This method requires to prepare substrates to form the electrophiles, and the overall process is neither atom-economical nor green. Therefore, the protocol for novel procedures for the Recently, great interests have been aroused to develop mild methods for the direct functionalization of C–H to construct C–C [6], C–N [7], C–O [8] and C–S [9] bonds. It is well known that Suzuki–Miyaura reaction is one of the most attractive methods to construct C–C bond [10]. With the development of the Suzuki–Miyaura reaction, boronic acids have been developed as powerful reagents owing to their nontoxicity, stability and compatibility with most functional groups [11]. So we envisioned that 4-aryl–1-phenylpyrazoles can be obtained through the metal-catalyzed direct arylation of phenylpyrazoles with aryl boronic acids. And it is very fortunate that the direct arylation of phenylpyrazole occurred smoothly using PdCl₂(PPh₃)₂ as catalyst. Here, we describe the novel synthesis of 4-aryl–1-phenylpyrazole derivatives containing CF₃ group. All the compounds were characterized by ¹H NMR, ¹³C NMR and HRMS spectroscopic techniques.

2. Results and discussion

We choose the reaction of 5-amino-1-[2,6-dichloro-4-trifluor-omethylphenyl]-l-H-pyrazole-3-carbonitrile (1a) with phenyl boronic acid (2a) as a model system to determine the optimal reaction conditions (Table 1). Initially, a series of Pd catalysts, including PdCl₂, Pd(OAc)₂, Pd(PPh₃)₄ and PdCl₂(PPh₃)₂, were tested for the reaction using 2 equiv NaHCO₃ as base, 1 equiv NIS as iodine source, C₂H₅OH:H₂O (3:1) as solvent at 80 °C under N₂ (entries 1–4). Among these catalysts screened, PdCl₂(PPh₃)₂ showed the

 $\emph{E-mail addresses:}\ kamenzxh@163.com\ (X.-H.\ Zhang),\ zhongp0512@163.com\ (P.\ Zhong).$

^a College of Chemistry and Materials Science, Wenzhou University, Wenzhou 325035, China

^b Oujiang College, Wenzhou University, Wenzhou 325035, China

synthesis of 4-aryl-1-phenylpyrazoles containing CF₃ group is still a great challenge.

^{*} Corresponding author. Tel.: +86 0577 86689338; fax: +86 0577 86689338.

^{**} Corresponding author at: College of Chemistry and Materials Science, Wenzhou University, Wenzhou 325035, China. Tel.: +86 0577 86689338; fax: +86 0577 86689338.

Fig. 1. Fipronil (I) and analogs (II, III, IV).

highest efficiency. However, when the reaction was conducted under atmospheric condition, the yield was decreased to 54% (entry 3). Other transition-metal catalyst, Cu(OAc)₂ was also measured and the byproduct of 4-iodo-1-phenylpyrazole was found to be obtained in a high yield (entry 5). Next, NaHCO₃ was replaced with different bases, such as CH₃ONa, Cs₂CO₃, K₂CO₃, t-BuOK, Na₂CO₃ and CH₃COOK, the results indicated that the identity of base was critical to the success of the direct arylation (entries 6-11). Subsequently, when the amount of NaHCO₃ was decreased to 1.5 equiv, the yield of **3** was reduced to 50% (entry 3). Promoted by the help from NIS, other iodide reagents, such as I2 or ICl, were investigated in the presence of PdCl₂(PPh₃)₂ and they are less effective than NIS (entries 12-13). Based on our previous work [12], we think NIS promoted the generation of 4-iodo-1phenylpyrazole in situ compared to I₂ and ICl, which was then reacted with phenyl boronic acid to give the arylated product 3. It is noteworthy the slightly excess of NIS affected the yield slightly,

Gratifyingly, aryl boronic acids with electron-rich and electron-poor groups were successfully converted to the corresponding arylated products in moderate to good yields. Generally speaking, the electron-donating groups, such as methoxy, methyl and ethyl, on the phenyl ring of boronic acids were beneficial for the

on the phenyl ring of boronic acids were beneficial for the transformation (entries 2–4), whereas electron-withdrawing groups like chloro, fluoro and trifluoromethyl, decreased the efficiency (entries 7–9). Yet, steric hindrance affected the efficiency. For example, 88% yield of compound 4 without ortho substituent was isolated, while the yield of compounds 7 and 8 derived from ortho-substituted boronic acid were decreased to

69% and 60%, respectively (entries 5-6).

but only 75% yield of **3** was obtained when decreasing the amount of NIS to 0.9 equiv (entries 14–15). It was interesting that no arylated product but only the by-product 4-iodo-1-phenylpyrazole can be obtained in high yields (entries 16–17) when the mixture

solvent of C₂H₅OH:H₂O was replaced with C₂H₅OH and dioxane. With the optimal catalytic system in hand, the scope of boronic acids in the reaction with **1a** was next investigated (Table 2).

Subsequently, the substrate scope was extended to 5-amino-1-[2-chloro-4-trifluoromethylphenyl]-l-H-pyrazole-3-carbonitrile (**1b**) and 5-amino-1-phenyl-3-methylpyrazole (**1c**). With the strong electron-withdrawing group of trifluoromethyl on the phenyl ring, substrate **1a** and **1b** reacted with aryl boronic acids smoothly to give the arylated products in good yields (entries 1–10). However, when CF₃ on the phenyl ring of substrate **1c** disappeared, as well as CH₃ instead of CN on the pyrazole ring, no more than 62% of arylated products can be obtained (entries 11–18). The relatively poor reactivity may largely attribute to absence

Table 1 Optimization of the arylation conditions.^a

Entry	Catalyst	Base	Iodide source	Solvent	Yield (%) ^b
1	PdCl ₂	NaHCO ₃	NIS	C ₂ H ₅ OH:H ₂ O	25
2	$Pd(OAc)_2$	NaHCO ₃	NIS	C ₂ H ₅ OH:H ₂ O	8
3	$PdCl_2(PPh_3)_2$	NaHCO ₃	NIS	C ₂ H ₅ OH:H ₂ O	85 (50°, 54 ^d)
4	$Pd(PPh_3)_4$	NaHCO ₃	NIS	C ₂ H ₅ OH:H ₂ O	52
5	Cu(OAc) ₂	NaHCO ₃	NIS	C ₂ H ₅ OH:H ₂ O	90^{d}
6	$PdCl_2(PPh_3)_2$	CH₃ONa	NIS	C ₂ H ₅ OH:H ₂ O	36
7	$PdCl_2(PPh_3)_2$	Cs ₂ CO ₃	NIS	C ₂ H ₅ OH:H ₂ O	6
8	$PdCl_2(PPh_3)_2$	K_2CO_3	NIS	C ₂ H ₅ OH:H ₂ O	32
9	$PdCl_2(PPh_3)_2$	t-BuOK	NIS	C ₂ H ₅ OH:H ₂ O	30
10	$PdCl_2(PPh_3)_2$	Na ₂ CO ₃	NIS	C ₂ H ₅ OH:H ₂ O	20
11	$PdCl_2(PPh_3)_2$	CH ₃ COOK	NIS	C ₂ H ₅ OH:H ₂ O	19
12	$PdCl_2(PPh_3)_2$	NaHCO ₃	I_2	C ₂ H ₅ OH:H ₂ O	36
13	$PdCl_2(PPh_3)_2$	NaHCO ₃	ICI	C ₂ H ₅ OH:H ₂ O	40
14 ^e	$PdCl_2(PPh_3)_2$	NaHCO ₃	NIS	C ₂ H ₅ OH:H ₂ O	86
15 ^f	$PdCl_2(PPh_3)_2$	NaHCO ₃	NIS	C ₂ H ₅ OH:H ₂ O	75
16	$PdCl_2(PPh_3)_2$	NaHCO ₃	NIS	C ₂ H ₅ OH	96 ^g
17	$PdCl_2(PPh_3)_2$	NaHCO ₃	NIS	Dioxane	93 ^g

- a Reaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), [NIS, I₂ or ICl] (1 equiv), [Pd] or [Cu] (10 mol%), base (0.4 mmol), C₂H₅OH:H₂O (3:1), N₂, 80 °C for 18 h.
- b Isolated vield.
- c NaHCO₃ (0.3 mmol).
- d Without N2.
- e NIS (1.1 equiv).
- f NIS (0.9 equiv).
- g The yield of by-product 4-iodo-1-phenylpyrazole

Download English Version:

https://daneshyari.com/en/article/1315077

Download Persian Version:

https://daneshyari.com/article/1315077

<u>Daneshyari.com</u>