Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jinorgbio

Spin–spin interactions in iron(III) porphyrin radical cations with ruffled and saddled structure

Souhei Kouno^b, Akira Ikezaki^{a,d}, Takahisa Ikeue^c, Mikio Nakamura^{a,b,d,*}

^a Department of Chemistry, School of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan

^b Division of Chemistry, Graduate School of Science, Toho University, Funabashi 274-8510, Japan

^c Department of Chemistry, Faculty of Material Science, Shimane University, Matsue, 690-8504, Japan

^d Research Center of Materials with Integrated Properties, Toho University, Funabashi, 274-8510, Japan

ARTICLE INFO

Article history: Received 4 November 2010 Received in revised form 5 January 2011 Accepted 10 January 2011 Available online 21 January 2011

Keywords: Iron(III) Porphyrin complexes One-electron oxidation Radical cation Spin state

ABSTRACT

Oxidation of essentially pure intermediate-spin iron(III) porphyrinates such as ruffled $Fe(T^{i}PrP)ClO_{4}$ and saddled $Fe(OETPP)ClO_{4}$ produces the corresponding six-coordinate iron(III) porphyrin(por) radical cations [$Fe(Por^{\bullet})(ClO_{4})_2$], where $T^{i}PrP$ and OETPP are dianions of 5,10,15,20-tetraisopropylporphyrin and 2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetraphenylporphyrin, respectively.

Spin–spin interactions in these complexes are very much different; while ruffled $[Fe(T^{i}PrP^{\bullet})(ClO_{4})_{2}]$ exhibits no antiferromagnetic coupling, saddled $[Fe(OETPP^{\bullet})(ClO_{4})_{2}]$ does exhibit it. The difference in magnetic behaviors has been explained in terms of the deformation mode and electron configuration of these complexes.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that iron(III) porphyrin complexes usually adopt either high-spin (S = 5/2) or low-spin (S = 1/2) state depending on the nature and number of the axial ligands [1,2]. If field strength of axial ligand is extremely weak, they adopt even intermediate-spin (S=3/2) state [3]. One electron oxidation of iron(III) porphyrins produces either iron(IV) poprphyrins or iron(III) porphyrin radical cations depending mainly on the nature of axial ligands [4]. Oxo ligand stabilizes the iron(IV) state as is revealed from a number of examples having Fe^{IV} O bond [5–7]. On the other hand, the iron(IV) complexes without Fe^{IV} O bond are quite limited. To our knowledge, the bis-methoxo complex, [Fe^{IV}(TMP)(OMe)₂], is the only example that is well characterized [8]. As for the iron(III) porphyrin radical cations, there are ample examples where the iron(III) ions adopt highspin (S = 5/2), low-spin (S = 1/2), or mixed high- and intermediatespin (S = 3/2, 5/2) states [9-13]. However, there is no example of the iron(III) radical cation where the iron(III) ion adopts a pure intermediate-spin state. We and others have reported that the deformation of porphyrin ring stabilizes the intermediate-spin state [14-20]. In fact, ruffled or saddled complexes carrying weak axial ligands such as Fe(TⁱPrP)ClO₄ and Fe(OETPP)ClO₄ exhibit an essentially pure intermediate-spin state [21,22]. It should then be possible to obtain iron(III) radical cation with a pure intermediate-spin state by the oxidation of the deformed complexes mentioned above. In this paper, we will report the ¹H NMR study on the spin–spin interactions of one-electron oxidized products shown in Scheme 1, *i.e.* sixcoordinate Fe^{III}(Por•)(ClO₄)₂ and five-coordinate [Fe^{III}(Por•)Cl]SbCl₆ where Por indicates the dianion of either ruffled TⁱPrP or saddled OETPP, and discuss the effect of deformation mode on the electronic structure.

2. Experimental

Free base porphyrins, $(T^iPrP)H_2$ and $(OETPP)H_2$, were prepared according to the literature[23,24]. Insertion of iron was performed using FeCl₂·4H₂O in refluxing CHCl₃– CH₃OH or DMF followed by the purification of the products by the reported method [19,25]. Fe(TⁱPrP)Cl and Fe(OETPP)Cl thus formed showed the same ¹H NMR and UV-visible (UV-Vis) data as those reported previously [26,27]. One-electron oxidized products of iron(III) chloride such as [Fe(TⁱPrP•)Cl](SbCl₆) and [Fe(OETPP•)Cl](SbCl₆) were prepared by the addition of phenoxathiinylium hexachloroantimonate to the CH₂Cl₂ solutions of Fe(TⁱPrP)Cl and Fe(OETPP)Cl [28,29]. The radical cations thus formed were purified by the recrystallization from CH₂Cl₂-hexane. One-electron oxidized Fe (TⁱPrP•)(ClO₄)₂ was prepared by the addition of thianthrene radical cation perchlorate to the CH₂Cl₂ solution of Fe(TⁱPrP)(ClO₄) [11], while the one electron oxidized [Fe(OETPP•)(ClO₄)₂] was prepared by the addition of 4 equiv. of AgClO₄ to the CH₂Cl₂ solution of Fe(OETPP)Cl. The

^{*} Corresponding author at: Department of Chemistry, School of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan. Tel.: + 81 457822606; fax: + 81 354935430. *E-mail address*: mikio@fg7.so-net.ne.jp (M. Nakamura).

^{0162-0134/\$ –} see front matter © 2011 Elsevier Inc. All rights reserved. doi:10.1016/i.jinorgbio.2011.01.008

Scheme 1. Iron(III) porphyrin radical cations examined in this study.

¹H NMR spectra were recorded using CD_2Cl_2 as solvent on a JEOL LA 300 spectrometer operating at 300.4 MHz. Chemical shifts were referenced to residual solvent peaks (δ 5.32 ppm).

3. Results and discussion

Fig. 1 shows the ¹H NMR spectra of $[Fe(T^{i}PrP•)Cl](SbCl_{6})$ and Fe $(T^{i}PrP•)(ClO_{4})_{2}$ taken in a CD₂Cl₂ solution at 298 K. It is clear from these spectra that electron is removed from the porphyrin a_{2u} orbital because the meso-CH signals showed extremely large upfield or downfield shift; they appeared at -38.1 and 109.7 ppm in $[Fe(T^{i}PrP•)Cl](SbCl_{6})$ and Fe $(T^{i}PrP•)(ClO_{4})_{2}$, respectively. Table 1 lists the ¹H NMR chemical shifts of $[Fe(T^{i}PrP•)Cl](SbCl_{6})$ and $Fe(T^{i}PrP•)(ClO_{4})_{2}$ together with those of analogous $[Fe(TPP•)Cl](SbCl_{6})$ and $Fe(TPP•)(ClO_{4})_{2}$ reported previously [10,11]. For comparison, the chemical shifts of the parent complexes such as $Fe(T^{i}PrP)X$ and Fe(TPP)X (X is Cl⁻ or ClO₄⁻) are also listed [19,26,28,30,31].

The pyrrole-H chemical shifts are known to be a good probe to determine the spin state of the iron porphyrin complexes [21,22]. For example, the pyrrole-H signals of $Fe(T^{i}PPP)CI$ and $Fe(T^{i}PPP)(ClO_4)$ appear at 90.4 and -31.2 ppm, respectively, which indicate that these complexes adopt the high-spin and intermediate-spin states, respectively [19]. Thus, the pyrrole-H signals of radical cations, [$Fe(T^{i}PP^{\bullet})CI$] (SbCl₆) and $Fe(T^{i}PP^{\bullet})(ClO_4)_2$, observed at +64.6 and -64.1 ppm, respectively, suggest that the iron(III) ions of these complexes maintain the spin states of the starting complexes. The reversal of the sign in the *meso*-CH chemical shifts between [$Fe(T^{i}PP^{\bullet})CI$](SbCl₆)

Fig. 1. ¹H NMR spectra of (a) [Fe(TⁱPrP•)Cl](SbCl₆) and (b) $Fe(T^iPrP•)(ClO_4)_2$ taken in a CD₂Cl₂ solution at 298 K.

Table 1

¹H NMR chemical shifts of some cation radicals (in ppm) and their parent complexes taken in a CD₂Cl₂ solution at 298 K.

Complexes	Pyrrole			Meso			Ref.
	Н	CH ₂	CH ₃	CH (ortho)	CH ₃ (meta)	(para)	
T ⁱ PrP [Fe(T ⁱ PrP [•])Cl] (Sbl ₆)	64.6	-	-	- 38.1	-9.6		This work
$Fe(T^{i}PrP^{\bullet})$ (ClO ₄) ₂	-64.1	-	-	109.7	23.8		This work
Fe(T ⁱ PrP)Cl Fe(T ⁱ PrP) (ClO ₄)	90.4 - 31.2	-	-	28.3 13.8	9.5 5.3		[19] [19]
TPP	66 1			(27.6	(12.4)	(20.5)	[10]
(Sbl ₆)	00.1	-	-	(37.6, 34.4)	(-12.4)	(29.5)	[10]
Fe(TPP [•]) (ClO ₄) ₂	31.4	-	-	(-19.3)	(34.7)	(-12.9)	[31]
[Fe(TPP)Cl]	80.1	-	-	(6.2,	(12.6,	(5.8)	[28]
Fe(TPP) (ClO ₄)	13.0	-	-	(9.2)	(11.9)	(7.7)	[31]
OETPP							
[Fe(OETPP [•])Cl] (SbF ₆)	-	71.2, 56.1 24.7, 16.6 (42.2)	4.4, 3.6 (4.0)	(37.6, 34.9)	(-10.1, -11.5)	(28.8)	[28]
$Fe(OETPP^{\bullet})$ $(ClO_4)_2$	-	91.4, 23.8 (57.6)	6.2	(33.5)	(-7.7)	(26.9)	This work
Fe(OETPP)Cl	-	49.0 34.8 32.1 20.1 (34.0)	1.8 3.2 (2.5)	(11.5, 9.1)	(12.4, 12.2)	(7.5)	[27,28]
Fe(OETPP) (ClO ₄)	-	13.0 42.7 (27.9)	0.7	(13.4)	(7.1)	(9.8)	[16]

and Fe(TⁱPrP•)(ClO₄)₂ should be ascribed to the presence of antiferromagnetic coupling between the S = 5/2 iron(III) ion and the S = 1/2 porphyrin radical in the former complex. The same antiferromagnetic coupling was reported in [Fe(TPP•)Cl](SbCl₆); the signs of the *ortho*, *meta*, and *para*-H chemical shifts of this complex are just opposite to those of Fe(TPP•)(ClO₄)₂ [11]. Thus, the antiferromagnetic coupling occurs only in five-coordinate complexes such as [Fe(TPP•)Cl](SbCl₆) and [Fe(TⁱPrP•)Cl](SbCl₆). This is because the half-occupied a_{2u} orbital of porphyrin can interact with the half-occupied iron d₂2 orbital in the five-coordinate high-spin complexes; these orbitals are signified as a₁ in C_{4v} domed complexes [32].

The question then arises as to why there is no antiferromagnetic coupling in ruffled six-coordinate $Fe(T^iPrP^{\bullet})(ClO_4)_2$ in spite of the well known fact that the half-occupied iron d_{xy} orbital can interact with the doubly occupied porphyrin a_{2u} orbital in low-spin iron(III) complexes with ruffled porphyrin framework [21,22,33,34]; both d_{xy} and a_{2u} orbitals in planar D_{4h} complex are signified as b_2 in ruffled D_{2d} complex [35,36]. A possible explanation is that radical cationic Fe $(T^iPrP^{\bullet})(ClO_4)_2$ posseses no unpaired electron in the d_{xy} orbital. In other words, the complex adopts the $(d_{xy})^2(d_{xz}, d_{yz})^2(d_z2)^1(a_{2u})^1$ electronic ground state rather than $(d_{xz}, d_{yz})^3(d_z2)^1(d_{xy}, a_{2u})^2$ [37]. Thus, the a_{2u} radical maintains the positive spin in Fe(TⁱPrP^{\bullet})(ClO_4)_2.

We have once reported that essentially pure intermediate-spin iron(III) complexes such as $Fe(T^iPrP)(ClO_4)$ and $[Fe(T^iPrP)(THF)_2]$ (ClO₄) adopts the $(d_{xz}, d_{yz})^3(d_{xy})^1(d_z2)^1$ ground state rather than $(d_{xy})^2(d_{xz}, d_{yz})^2(d_z2)^1$ [15]. However, the DFT calculations have suggested different electronic ground states for the latter complex [38,39]. We have later corrected that $[Fe(T^iPrP)(THF)_2](ClO_4)$ adopts

Download English Version:

https://daneshyari.com/en/article/1316246

Download Persian Version:

https://daneshyari.com/article/1316246

Daneshyari.com