ELSEVIER

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

An alternative approach to differentially substituted 2-oxazoline chalcogen derivatives

Murilo B.M. de Mello ^{a, 1}, Giuliano C. Clososki ^b, Leandro Piovan ^{a, 1}, Alfredo R.M. de Oliveira ^{a, *, 1}

- ^a Universidade Federal do Paraná, Departamento de Química, Centro Politécnico, Curitiba 81.531-980, Brazil
- b Núcleo de Pesquisas em Produtos Naturais e Sintéticos, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/nº. Ribeirão Preto. SP 14040-903. Brazil

ARTICLE INFO

Article history:
Received 23 March 2015
Received in revised form
11 June 2015
Accepted 15 June 2015
Available online 23 June 2015

Keywords: Differentially substituted 2-oxazolines 2-oxazolinyl chalcogenides ⁷⁷Se NMR of seleno 2-oxazolines Aza-allyl telluride oxidation

ABSTRACT

In this study we present an alternative method to obtain several substituted mono or bis-2-oxazolines containing a chalcogen atom as a tether element. Alkylation of 2-tosyloximethylene-2-oxazoline with an appropriate sodium, lithium or potassium alkoxide yielded the corresponding ether. Introduction of sulfur or selenium was easily accomplished using the corresponding sodium salts. The ⁷⁷Se NMR for alkyl or aryl 2-methylene-2-oxazoline selenides shows good correlation with the electronegativity pattern of substituents. Most products containing oxazolinyl-chalcogen were stable under the usual experimental conditions. However, the tellurium derivatives showed unusual sensitivity to light and oxygen, decomposing through a very complex mechanistic pathway. As a result of this oxidative process, 4,4-dimethyl-2-oxazoline-2-carbaldehyde could be isolated and fully characterized for the first time, in 17% yield.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

2-oxazolines are important heterocyclic compounds [1] that occur in nature as iron chelators [2], cytotoxic peptides [3], and neuroprotective agents [4], to cite a few. They are also important in biological systems, since they are involved in the complexation of metallic ions such as Cu²⁺ and Zn²⁺ [5]. Moreover, 2-oxazolines have several well-known applications in organic synthesis as protective groups [6], synthetic intermediates [7], and chiral ligands [8].

The most common approach to synthesize 2-oxazolines involves the condensation of a 1,2-amino alcohol with a carboxylic acid or its ester derivatives [9]. Several other masked carboxylic acid functional groups can be used, including nitriles [10], imidate hydrochlorides [11], orthoesters [12], and iminoether hydrochlorides [13]. A variety of reagents have been employed to accomplish the cyclodehydration step, such as PPh₃/DDQ [14], diethylaminosulfur trifluoride (DAST) [15], bis-(2-methoxyethyl)-

armo@quimica.ufpr.br (A.R.M. de Oliveira).

aminosulfur trifluoride (Deoxo-Fluor) [16], and PPh₃/DEAD [17]. CaO has been utilized to promote dehydration from boron esters of N-(2-hydroxyethyl) amides [18]. Recently, the synthesis of 2-pyridyl-2-oxazolines was reported using $Zn(OAc)_2$ as catalyst under microwave heating [19].

2-oxazoline-inspired ligands (Fig. 1) such as BOX, PYBOX (**1a-d**), and INDABOX **2**, to name a few, were developed and applied to metal catalysis involving copper, palladium, rhenium, rhodium, or ruthenium [20]. Most of the existing methods used to obtain these BOX-type ligands are restricted to structures with a C_2 -symmetry chiral axis [21–23].

Although the *ortho*-lithiation of 2-aryl-2-oxazolines has been widely used for the regioselective functionalization of arenes and heteroarenes [24], the anion derived from 2-methyl-2-oxazoline is the most frequently explored species. It has been employed in the synthesis of carboxylic acid homologues [25], lactones [26], and zinc [27] or copper [28] organometallic reagents, among others [29].

A clever way to use 2-methyl-2-oxazolines is by placing a leaving group at the 2-position. One example is 2-chloromethylene-2-oxazoline, which can be obtained using a classic condensation method by reacting chloromethyl imidate hydrochloride and an aminoalcohol [30]. Unfortunately, this

^{*} Corresponding author.

E-mail addresses: murilo@ufpr.br (M.B.M. de Mello), lpiovan@ufpr.br (L. Piovan),

¹ http://www.quimica.ufpr.br.

Fig. 1. Examples of BOX type ligands found in the literature.

Scheme 1. General route for the synthesis of 2-oxazolinyl ethers.

method is very inefficient when 2-amino-2-methyl-1-propanol is used [31]. To overcome this limitation, an alternative chlorination method using t-butylhypochlorite in carbon tetrachloride was developed by Langlois [31] and well explored by Florio [32] in several studies. However, due to environmental restrictions, the use of carbon tetrachloride has been banned in many countries, including Brazil.

In order to extend the studies with 2-oxazoline chemistry, we report the development of an alternative building block that can be used in place of 2-chloromethylene-4,4-dimethyl-2-oxazoline. It was used for the synthesis of 2-oxazolines with more diverse structural features, avoiding the use of environmentally aggressive reagents. During the synthesis of tellurium-oxazoline compounds, an unusual photo oxidation process was observed that is similar to the decomposition of allylic or benzylic tellurides.

2. Results and discussion

2-hydroxy-methylene-2-oxazolines 3 and 4 were prepared in multi-gram scale [33] and easily converted into the corresponding tosylates **5** or **6**, in 94 and 95% yields, respectively, through reaction with tosyl chloride in THF at 0 °C (Scheme 1).

Entry	Tosylate	Alkoxide	Product	Yielda
1	5	O- Li*	, , , , , , , , , , , , , , , , , , ,	80%
2	5	0° Li*		72%
3	5	= ^{0⁻} Li⁺	7b	75%
4	5	O. K+	7c	85% ^b
5	5	0. ri.	7d N N 7e	85%
6	6	O-Li*	N O	90%

a Isolated vield.

Scheme 2. Synthesis of compounds 8a, 8b and 8c.

Scheme 3. Synthesis of sulfide 8d and chiral sulfide 8e.

The dropwise addition of an appropriate alkoxide solution in THF at room temperature into a solution of 5 or 6, also dissolved in THF, followed by 2 h of reflux, afforded the desired products in good to excellent yields (Table 1). As observed, the reaction worked very well with several alkoxides such as alkyl (7a) (80%), allylic (7b) (72%), propargylic (7c)(75%) or aromatic (7d)(85%). Reactions were very clean and the products could be easily purified by column chromatography. Lower yields were observed only when isolating the more volatile products (7b. 7c). This method also preserves the stereochemistry of the substrate, as can be seen for products 7e and 7f (Table 1, entries 5 and 6).

During the initial studies for preparation of compound 5, a small amount of the BOX-like, bis-(2-methyl-2-oxazolinyl) ether (8a) was formed as a byproduct, which prompted us to conduct further investigations. By fine-tuning the reaction conditions, either compound 5 or 8a could be obtained with high selectivity and excellent yield. The symmetrical and chiral ether **8b** was achieved by using similar conditions (Scheme 2). Additionally, the differentially substituted ether 8c was obtained in 79% isolated yield by reacting the sodium alkoxide from 3 with chiral tosylate 6. Thus, this

^b Obtained using K₂CO₃/acetone.

Download English Version:

https://daneshyari.com/en/article/1320784

Download Persian Version:

https://daneshyari.com/article/1320784

<u>Daneshyari.com</u>