ELSEVIER

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Synthesis and redox chemistry of cycloheptatrienyl molybdenum carbon-chain complexes featuring diimine support ligands: $[Mo\{(C \equiv C)_n C \equiv CR\}(R'N = CH = NR')(\eta - C_7H_7)], (n = 0 \text{ or } 1)$

Huriyyah A. Alturaifi ^a, James Faulkner ^a, James Raftery ^a, Floriana Tuna ^b, David Collison ^b, Mark W. Whiteley ^{a,*}

ARTICLE INFO

Article history: Received 17 June 2013 Received in revised form 24 July 2013 Accepted 30 July 2013

Keywords: Molybdenum Cycloheptatrienyl Alkynyl ligand Diimine ligand Redox chemistry

ABSTRACT

The alkynyl complexes $[Mo(C \equiv CR)(R'-dab)(\eta-C_7H_7)]$ (dab = diazabutadiene; $R' = {}^tBu$, R = Ph, $\mathbf{2a}$; C_6H_4-4-Me , $\mathbf{3a}$; tBu , $\mathbf{4a}$; $R' = C_6H_4-4-Me$, R = Ph, $\mathbf{2b}$) have been synthesised by reaction of $[MoBr(R'-dab)(\eta-C_7H_7)]$ with LiC \equiv CR in thf. Crystallographic characterisation of $[Mo(C \equiv CC_6H_4-4-Me)({}^tBu-dab)(\eta-C_7H_7)]$, $\mathbf{3a}$ determines a $Mo-C_\alpha$ bond distance of 2.154(3) Å. Cyclic voltammetric investigations on the alkynyl complexes $\mathbf{2a}$, $\mathbf{2b}$, $\mathbf{3a}$, $\mathbf{4a}$ and the extended chain butadiynyl derivative $[Mo(C \equiv CC \equiv CSiMe_3)({}^tBu-dab)(\eta-C_7H_7)]$, $\mathbf{5a}$, reveal that each complex exhibits a chemically and electrochemically reversible one-electron oxidation to give the corresponding 17-electron radical cation. Characterisation of the radicals $[\mathbf{2a}]^+$, $[\mathbf{2b}]^+$, $[\mathbf{3a}]^+$, and $[\mathbf{5a}]^+$ by IR and EPR spectroscopic techniques indicates that the redox process is strongly metal centred. Spectroscopic and synthetic investigations establish that 17-electron radicals of the type $[Mo\{(C \equiv C)_n C \equiv CR)\}(R'-dab)(\eta-C_7H_7)]^+$ (n = 0 or 1) have relatively low thermodynamic stability.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Complexes of highly unsaturated carbon-chain ligands [1,2] are the focus of significant current activity in organometallic chemistry with the expectation of future applications as molecular materials in electronic [3], magnetic [4] and optical [5] devices. Many investigations have focussed on carbon chain complexes of redox-active, metal phosphine based support groups such as Fe(dppe)Cp* [6], Ru(PPh₃)₂Cp and Ru(dppe)Cp* [7], Mn(dmpe)₂ [8], $Re(PPh_3)(NO)Cp^*$ [9], $RuCl(dppe)_2$ [10] and $Mo(dppe)(\eta - C_7H_7)$ [11–13], $(dppe = Ph_2PCH_2CH_2PPh_2)$ leading to the development of carbon chain bridged bimetallic systems in a range of oxidation states [14]. An alternative line of enquiry has centred on complexes of the type $[Pt(C \equiv CR)_2(bpy)]$ [15], (bpy = 2,2'-bipyr-biidine) $[Re\{(C \equiv C)_n C \equiv CR\}(CO)_3(bpy)]$ [16], and $[Ru(C \equiv CR)(bpy)L_3]$, $(L_3 = Cl(PPh_3)_2, (C \equiv CR)(PPh_3)_2, 1,4,7-trithiacyclononane)$ [17], in which the combination of carbon-chain donor and diimine acceptor ligands promotes luminescence and photoinduced charge separation properties. However very few reports provide the

opportunity for a direct comparison between the properties of phosphine and diimine supported systems [13,18,19].

Our investigations on the redox chemistry of carbon chain complexes have centred on the cycloheptatrienyl molybdenum systems $[Mo\{(C \equiv C)_n C \equiv CR\}(dppe)(\eta - C_7 H_7)]^{z+}$, (n = 0 or 1; z = 0)or 1) [11–13]. The Mo(dppe)(η -C₇H₇) support unit confers relatively high thermodynamic stability upon 17-electron radical cations (z = 1), an observation which may be rationalised by electronic structure calculations which reveal a largely metalcentred HOMO incorporating substantial metal d_z2 character [11]. In addition to dppe supported systems, examples of diimine halide complexes [MoBrL₂(η -C₇H₇)] (L₂ = bpy, ^tBu-dab; t Bu-dab = 1,4- t Bu₂-1,3-diazabutadiene) [20] and the butadiynyl derivatives $[Mo(C \equiv C - C \equiv CSiMe_3)L_2(\eta - C_7H_7)] (L_2 = bpy, {}^tBu-dab)$ [12,13] have been described. These complexes exhibit well behaved, reversible one-electron oxidation processes and a few key results indicate that some diimine support ligands may enhance the stability of 17-electron radical cations (diimine = bpy) [13] and co-ordinatively unsaturated 16-electron species (diimine = bis(imidazolin-2-imine) [21]). The objective of the current work was therefore to develop an extended range of complexes $[Mo\{(C \equiv C)_n C \equiv CR\}L_2(\eta - C_7H_7)]^{z+}$ (L₂ = diimine) to explore the effect of substitution of dppe by a diimine ligand upon the reaction chemistry and redox properties of these complexes.

^a School of Chemistry, University of Manchester, Manchester M13 9PL, UK

^b EPSRC National Service for EPR Spectroscopy, School of Chemistry, University of Manchester, Manchester M13 9PL, UK

^{*} Corresponding author. Tel.: +44 1612754634. E-mail address: Mark.Whiteley@manchester.ac.uk (M.W. Whiteley).

Scheme 1. Reagents and conditions (i) LiC≡CR, thf, -30 °C, 45 min; 20 °C, 1 h (ii) LiC≡C-C≡CSiMe₃, thf, -78 °C, 30 min; 20 °C, 1 h, 30 °C, 30 min.

2. Results and discussion

2.1. Synthetic and structural studies

The reaction of [MoBr(tBu -dab)(η -C $_7H_7$)], **1a** with LiC \equiv CR (R = Ph, C $_6H_4$ —4-Me or tBu) in thf resulted in a colour change from violet-purple to red-purple and formation of the new diimine alkynyl complexes [Mo(C \equiv CR)(tBu -dab)(η -C $_7H_7$)] (R = Ph, **2a**; tBu , **4a**, Scheme 1) which were isolated as purple solids following purification by chromatography on alumina. Similarly [Mo(C \equiv CPh)(p-tolyl-dab)(η -C $_7H_7$)], **2b**, (p-tolyl = C $_6H_4$ —4-Me) was obtained by reaction of [MoBr(p-tolyl-dab)(η -C $_7H_7$)], **1b** with LiC \equiv CPh in thf. The extended chain butadiynyl complex [Mo(C \equiv CC \equiv CSiMe $_3$)(tBu -dab)(η -C $_7H_7$)], **5a** was also prepared as described previously [12], from the reaction of **1a** with LiC \equiv CC \equiv CSiMe $_3$ in thf.

In contrast with the diazabutadiene system, the chemistry of carbon-chain complexes of the Mo(bpy)(η -C₇H₇) support group is more limited. We have previously reported the synthesis and redox chemistry of the butadiynyl complex [13] [Mo(C=CC=CS:Me₃)(bpy)(η -C₇H₇)] but attempts to prepare bipyridyl supported

alkynyl complexes $[Mo(C \equiv CR)(bpy)(\eta-C_7H_7)]$ were unsuccessful. Thus reaction of $[MoBr(bpy)(\eta-C_7H_7)]$ with LiC \equiv CPh in thf resulted in a deep green solution which exhibited an IR active stretch at 2057 cm⁻¹ but subsequent work up led to decomposition.

Characterisation details for each of the new alkynyl complexes 2a, 3a, 4a and 2b are presented in Table 1 (¹H and ¹³C NMR spectroscopy) and the Experimental section (IR spectroscopy, mass spectrometry and, with the exception of **4a**, microanalytical data). The very high solubility of **4a** in all common solvents impeded purification attempts by recrystallisation. Each of the alkynyl complexes exhibits a characteristic $\nu(C = C)$ infra-red active stretching frequency around 2075 cm $^{-1}$ (CH₂Cl₂) and in the 13 C{ 1 H} NMR spectrum the arylalkynyl derivatives exhibit a resonance for C_{α} in the region 135-140 ppm. These values are similar to the chelate phosphine analogues (for example [Mo(C \equiv CPh)(dppe)(η -C₇H₇)], $\nu(C \equiv C)$, (CH_2Cl_2) 2045 cm⁻¹; δC_{α} (CD_2Cl_2) , 141.4 ppm) [11] but by comparison with dppe analogues the diazabutadiene derivatives exhibit a small shift in $\nu(C \equiv C)$ to higher wavenumber and a high field shift in both δ C_{α} and δ C_{β} . These differences are indicative of decreased electron density at the metal centre in the diazabutadiene complexes; a similar trend is observed along the series

Table 1 1 H and 13 C(1 H) NMR data a for [Mo{(C=C) $_{n}$ C=CR}(R'-dab)(η -C $_{7}$ H $_{7}$)].

	¹ H NMR				¹³ C{ ¹ H} NMR				
	C≡CR	C ₇ H ₇	R'-dab	Cα	C_{β}	C≡CR	C ₇ H ₇	R'-dab	
2a	7.04, 4H, m; 6.92, 1H, m	5.01	7.19, NCH; 1.45, ^t Bu	137.8	108.9	130.4, 129.1, 128.2, 124.5	90.2	139.7, NCH; 63.1, CMe ₃ ; 32.0, C(CH ₃) ₃	
2b	7.13, 2H, m, H _o ; 7.06, 2H, m, H _m ; 6.97, 1H, m, H _p	5.01	7.44, 2H, d (J_{H-H} 8); 7.20, 2H, d (J_{H-H} 8); C_6H_4 Me; 7.19, NCH; 2.36, C_6H_4 Me	136.5	109.2	131.1, 128.4, 128.3, 125.3	92.3	140.9, NCH; 154.9, 136.0, 129.4, 121.7, C ₆ H ₄ Me; 21.2, C ₆ H ₄ Me	
3a	6.86, 2H, d (J _{H-H} 8); 6.82, 2H, d, (J _{H-H} 8); C ₆ H ₄ Me; 2.13, C ₆ H ₄ Me	4.98	7.20, NCH; 1.42, ^t Bu	134.2	108.7	132.3, 130.3, 128.9, 126.1, C ₆ H ₄ Me; 21.3, C ₆ H ₄ Me	90.2	139.6, NCH; 63.1, CMe ₃ ; 32.0, C(CH ₃) ₃	
4a 5a ^c	0.91 0.12	4.88 5.07	7.13, NCH; 1.39, ^t Bu 7.32, NCH; 1.50, ^t Bu	117.2; 134.6		61.4, CMe ₃ ; 32.6, C(CH ₃) ₃ 91.6, C _{γ} ; 74.5, C _{δ} ; -0.2, SiMe ₃	89.9 89.9	138.6, NCH; 62.7, CMe ₃ ; 31.9, C(CH ₃) ₃ 140.0, NCH; 62.7, CMe ₃ ; 31.4, C(CH ₃) ₃	

^a 400 MHz ¹H, 100 MHz ¹³C{¹H}, spectra; d = doublet, m = multiplet; chemical shifts downfield from SiMe₄, coupling constants in Hz; in CD₂Cl₂ solution. All spectra recorded at ambient temperature.

^b C_{α} and C_{β} not distinguished.

^c Data from Ref. [12].

Download English Version:

https://daneshyari.com/en/article/1321538

Download Persian Version:

https://daneshyari.com/article/1321538

<u>Daneshyari.com</u>