Journal of Organometallic Chemistry 818 (2016) 128-136

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Catalytic activity of phenyl substituted cyclopentadienyl neodymium complexes in the ethylene oligomerization process

Mikhail E. Minyaev ^a, Alexey A. Vinogradov ^{a, b}, Dmitrii M. Roitershtein ^{a, b}, Roman S. Borisov ^{a, c}, Ivan V. Ananyev ^d, Andrei V. Churakov ^e, Ilya E. Nifant'ev ^{a, f, *}

^a A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, 119991, Moscow, Russia

^b N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991, Moscow, Russia

^c Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Str., 117198, Moscow, Russia

^d A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova Str., 119991, Moscow, Russia

^e N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Prospect, 119991, Moscow, Russia

^f M.V.Lomonosov Moscow State University, Chemistry Department, 1 Leninskie Gory Str., Building 3, 119991, Moscow, Russia

ARTICLE INFO

Article history: Received 28 March 2016 Received in revised form 25 May 2016 Accepted 3 June 2016 Available online 6 June 2016

Keywords:

Cyclopentadienyl neodymium complexes Ethylene oligomerization Iodine end functionalized oligoethylenes Chain transfer X-ray crystal structures MALDI-TOF mass spectrometry

ABSTRACT

New mono- and bis-cyclopentadienyl neodymium ate-complexes, bearing phenyl-substituents in the cyclopentadienyl ring, have been synthesized: $KNdCp'Cl_3(thf)_x$ ($Cp' = 1,3-Ph_2C_5H_3$ (1), 1,2,4-Ph_3C_5H_2 (2)) and $KNdCp'_2Cl_2(thf)_x$ ($Cp' = 1.3-Ph_2C_5H_3$ (**3**), 1.2.4-Ph_3C_5H_2 (**4**), 1.2-Me_2-4-PhC_5H_2 (**5**), 1.2-Ph_2-4-(4-MeO- C_6H_4) C_5H_2 (6)). Their catalytic activity has been studied in ethylene oligomerization process in the presence of Bu₂Mg as a chain transfer reagent with the Nd:Mg molar ratios being of 1:20, 1:40 or 1:80. Complex 4 exhibits catalytic activity close to the activity of the known complex $[(C_5Me_5)_2NdCl_2Li(OEt_2)_2]$ (7). The complex 6 has demonstrated the best catalytic activity among all studied complexes. Using selected complexes 2, 4 and 6 as pre-catalysts, terminal iodo-functionalized oligoethylenes have been prepared. Obtained iodooligoethylenes have been studied by ¹H NMR technique and MALDI massspectrometry with preliminary derivatization, demonstrating 70-90% of functionalization. Crystal [(1,2,4structures of ate-complexes $[{(1,2,4-Ph_3C_5H_2)Nd(thf)}_2Cl_5K]_2(toluene)_4$ (2a). $Ph_{3}C_{5}H_{2})_{2}NdCl_{2}K(thf)_{0.53}(1,4-dioxane)_{1.47}]_{2}(dioxane)$ (**4**a) and {[{1,2-Ph₂-4-(4-MeO-C₆H₄) $C_{5}H_{2}$ /2NdCl₂K]₂(1,4-dioxane)}(toluene)₄ have been studied by the single crystal X-ray diffraction.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Polyethylene is one of the most studied and most demanded polymers, possessing a combination of attractive chemical and physical properties as well as a low production cost. Therefore, the synthesis, exploration and manufacture of new polymeric materials, based on polyethylene, are of a special interest, although polyethylene itself has a poor compatibility with other materials, leading to limitation of its applications [1]. Functionalized oligoand polyethylenes can serve starting materials or building units in the preparation of new various co-polymers and composite materials. Introduction of functional groups into a polyethylene chain has been an especially challenging chemical and technological problem since functional groups can hardly be incorporated into being formed polyethylene during industrial catalytic olefin polymerization process [1–3]. However, this problem has been successfully solved for oligo- and polyethylene with a terminal functional group being a good reactive site for versatile applications. One of possible solutions to the mentioned problem can be achieved by applying neodymium cyclopentadienyl complexes as pre-catalysts along with Alkyl₂Mg on a stage of catalytic ethylene polymerization followed by replacing the Mg atom at the end of polyethylene chain with a functional group [4–6]. The primary goal of the current work is to explore some of such catalytic systems in the synthesis of iodo-functionalized oligoethylenes, using a variety of new mono- and biscyclopentadienyl neodymium derivatives containing phenyl-substituents in the cyclopentadienyl ring.

^{*} Corresponding author. A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, 119991, Moscow, Russia. *E-mail address:* inif@org.chem.msu.ru (I.E. Nifant'ev).

2. Results and discussion

2.1. Synthesis of the complexes 1-6

Mono- and biscyclopentadienyl neodymium complexes **1–6** (Scheme 1) were obtained by reacting $NdCl_3(thf)_x$ in THF with solutions of potassium cyclopentadienides which were synthesized from benzyl potassium and corresponding substituted cyclopentadienes in THF media.

In order to confirm the formation of corresponding mono- and bis-cyclopentadienyl compounds, the X-ray structure determination was performed for compounds obtained by recrystallization of the ate-complexes 2, 4 and 6 from suitable solvent mixtures (Scheme 2), using toluene as a main component, since ethylene oligomerization experiments were carried out in toluene solutions. Recrystallization of 2 from a toluene/THF/hexane mixture resulted $[{(\eta^{5}-1,2,4-Ph_{3}C_{5}H_{2})Nd(thf)}_{2}(\mu_{2}-Cl)_{2}(\mu_{3}$ in formation of $Cl_{3}K_{2}(C_{6}H_{5}CH_{3})_{4}$ (2a). Crystallization of 4 and 6 from a toluene/ 1,4-dioxane mixture by slow solvent evaporation under reduced pressure led to $[(\eta^5-1,2,4-Ph_3C_5H_2)_2Nd(\mu_2-Cl)(\mu_3-Cl)K(thf)_{0.53}(1,4$ dioxane)_{1,47}]₂(1,4-dioxane) (**4a**) and $[\{\eta^5-1,2-Ph_2-4-(4-MeO-C_6H_4)\}$ $C_{5}H_{2}$ Md(μ_{2} -Cl)(μ_{3} -Cl)K]₂(μ_{2} -1,4-dioxane-1 κ O¹,2 κ O⁴)(toluene)₄ (6a), correspondingly.

For ethylene oligomerization experiments, freshly prepared toluene solutions of the complexes 1-6 were used. Neodymium concentration in the toluene solutions was determined by direct complexometric titration.

2.2. X-ray crystal structures

Polyphenyl substituted cyclopentadienyl complexes of rareearth metals have been poorly explored until recently. Presently, crystal structures of 20 rare-earth complexes, bearing C₅Aryl_nH_{5-n} (n = 2-5) ligands, are known: $[Ln(1,3-Ph_2C_5H_3)Cl_2(thf)_3]$ (Ln=Yb,CCDC: 863836 [7]; Lu, CCDC: 707661 [8]); [Lu(1,3-Ph₂C₅H₃)(Ph₄C₂)(thf)], CCDC: 707662 [8]; [Mg(thf)₆][Nd(1,2,4-618596 [(1,2,4- $Ph_3C_5H_2)(BH_4)_3],$ CCDC: [9]; Ph₃C₅H₂)₃Lu₄Cl₇O(thf)₃](thf)₂, CCDC: 863838 [7]; [(1,2,4-Ph₃C₅H₂) YCl₂(thf)₃](thf)_{0.5}, CCDC: 863837 [7]; [Yb(C₅Ph₄H)(µ-F)(thf)₂]₂, CCDC: 1007139 [10], $[Yb(C_5Ph_4H)(\mu-Br)(thf)_2]_2(solv)_x$ (solv = thf, x = 3, CCDC: 1032414; solv = toluene, x = 4, CCDC: 1032415) [11]; [Ln(C₅Ph₄H)₂(thf)] (Ln=Yb, CCDC: 1007140 [10]; Sm, CCDC: 1428959 [12]); [Eu(C₅Ph₄H)₂(dme)](dme)_{1.5} CCDC: 1428960 [12]; $[Sm(C_5Ph_4H)I(thf)_3](thf)$ CCDC: 1428962 [12]; $[La(C_5Ph_4H)_2[N(-$ SiHMe₂)₂], CCDC: 172415 [13]; [Ln(C₅Ph₅)₂], (Ln=Yb, CCDC: 689374 [14]; Eu, CCDC: 1428957 [12]); [Sm(C₅Ph₅)(μ-Br)(thf)₂]₂(thf)₆ CCDC: 1428958 [12]; $[Yb(C_5Ph_5)(thf)]_2(\mu-C_2Ph)_2$, CCDC: 286666 [15]; [Ln(C₅(4-Bu-C₆H₄)₅]₂ (Ln=Yb, CCDC: 665304 [16]; Sm, CCDC: 665305 [16]; Eu, CCDC: 837949 [17]). Only three of them have the triphenyl-substituted cyclopentadienyl ligand. Within the current work, we have extended the family of crystallographically characterized triphenylcyclopentadienyl complexes by establishing X-ray structures of **6a** (Fig. 1), **4a** (Fig. 2) and **2a** (Fig. 3). X-ray crystallographic data are summarized in Table 1. Selected bond distances and angles are given in the supplementary material for this paper.

The *ate*-complex $[\{\eta^{5}-1,2-Ph_{2}-4-(4-MeO-C_{6}H_{4})C_{5}H_{2}\}_{2}Nd(\mu_{2}-Cl)(\mu_{3}-Cl)K]_{2}(\mu_{2}-1,4-dioxane-1\kappa^{1}O^{1},2\kappa^{1}O^{4})(toluene)_{4}$ (**6a**, Fig. 1) represents a 1D coordination polymer. Two neighboring dimeric units $[\{1,2-Ph_{2}-4-(4-MeO-C_{6}H_{4})C_{5}H_{2}\}_{2}NdCl_{2}K]_{2}$, located at inversion centers, are bridged by a 1,4-dioxane molecule via oxygen atoms. An unusual structural motif $[Nd(\mu_{2}-Cl)(\mu_{3}-Cl)K]_{2}$ (Fig. 4, top left) connects the Nd, K and Cl core atoms together. The Nd(1)-Cl(1)-K(1)-Cl(2) and K(1)-Cl(2)-K(1A)-Cl(2A) fragments are planar with the folding angle of 38.12(6)°.

According to the Cambridge Structural Database (CSD, v.5.36) [18], the same structural motif $[Ln(\mu_2-Hal)(\mu_3-Hal)M]_2$ (M — alkali metal) is quite rare among organometallic complexes. Five following crystal structures have been revealed up to date: $[(^{1}Pr_4C_5H)_2NdCl_2Na(Et_2O)]_2$, CCDC: 212171 [19]; $[(1,5^{-t}Bu_2NC_4H_2)_2NdCl_2Na(thf)]_2$, CSD: 57704 (FIZ Karlsruhe) [20]; $[(C_9H_6-C_2B_{10}H_{10})Ln(thf)_2Cl_2K(thf)_2]_2$ (Ln=Y, CCDC: 709813; Gd, CCDC: 709814) [21]; and $[(1-NMe_2-3,5-Me_2-C_5BH_3)_2YCl_2Li]_2$, CCDC: 166215 [22].

The crystal structure of $[(\eta^5-1,2,4-Ph_3C_5H_2)_2Nd(\mu_2-Cl)(\mu_3-Cl)$ K(solv)(1,4-dioxane)]₂(dioxane) (**4a**, Fig. 2) (solv = thf or 1,4dioxane with the 0.53(1):0.47(1) occupancy ratio, correspondingly) contains the *ate*-complex, lying on an inversion center, and disordered molecules of non-coordinating solvents. Some of solvent molecules in the crystal channels were not resolved, therefore they were removed by the SQUEEZE method [23]. The main moiety has the same core (Fig. 4, top right) as **6a**, however the Nd(1)-Cl(1)-K(1)-Cl(2) fragment is not flat presumably because of the presence of two σ -donor ligands coordinated to the K⁺ cation in contrast with **4a** having only one dioxane ligand bound to K⁺. The crystal structures of [(¹Pr₄C₅H)₂NdCl₂Na(Et₂O)]₂ [19] and [(C₉H₆-C₂B₁₀H₁₀) Ln(thf)₂Cl₂K(thf)₂]₂ (Ln=Y, Gd) [21] supports this idea.

The dimeric unit $[{(\eta^{5}-1,2,4-Ph_{3}C_{5}H_{2})Nd(thf)}_{2}(\mu_{2}-Cl)_{2}(\mu_{3}-Cl)_{3}K]_{2}$ (Fig. 3) of the *ate*-complex $[(Ph_{3}C_{5}H_{2})Nd(thf)_{2}Cl_{5}K]_{2}$ (to-luene)₄ (**2a**) is also located at an inversion center. The arrangement of chloride anions in the unit $[Nd_{2}(\mu_{2}-Cl)_{2}(\mu_{3}-Cl)_{3}K]$ (Fig. 4, bottom) resembles a trigonal bipyramid with Cl(4), Cl(5) atoms being in axial positions, and Cl(1), Cl(2), Cl(3) being in equatorial positions. Two units are connected together via K(1)-Cl(1A) and K(1A)-Cl(1) bonds, forming a $[Nd_{4}Cl_{10}K_{2}]$ core. The folding angle between a nearly flat fragment K(1)-Cl(1)-Nd(1)-Cl(3)-Nd(2)-Cl(2) and the K(1)-Cl(1)-K(1A)-Cl(1A) plane is 40.49(3)°. The $[Nd_{2}(\mu_{2}-Cl)_{2}(\mu_{3}-Cl)_{3}K]_{2}$ core is unprecedented for rare-earth and alkali metals (CSD, v.5.36 [18]).

 $C_{ipso(Ph)}$ - $C_{ipso(Cp)}$ bond lengths (1.463(10)–1.494(9) Å) are slightly shorter than a single C–C bond length. All $C_{ipso(Ph)}$ atoms are slightly out of the plane of the cyclopentadienyl rings by

n

$$R^{3}$$
 K^{+}
 R^{2}
 $+$ NdCl₃(thf)_x
 $\xrightarrow{\text{THF}}$
 $(1-R^{1}-2-R^{2}-4-R^{3}C_{5}H_{2})_{n}$ NdCl_{4-n}K(thf)_m

1 n=1; m=2; R^{1}=Ph, R^{2}=H, R^{3}=Ph

2 n=1; m=3; R^{1}=Ph, R^{2}=Ph, R^{3}=Ph

3 n=2; m=2; R^{1}=Ph, R^{2}=Ph, R^{3}=Ph

4 n=2; m=3; R^{1}=Ph, R^{2}=Ph, R^{3}=Ph

5 n=2; m=1; R^{1}=Me, R^{2}=Me, R^{3}=Ph

(- 2 - - 2 - 2 - 2 - 4 - R^{3}C_{5}H_{2})_{n}NdCl_{4-n}K(thf)_m

6 n=2; m=3; R¹=Ph, R²=Ph, R³= 4-Me-OC₆H₄

Scheme 1.

Download English Version:

https://daneshyari.com/en/article/1321677

Download Persian Version:

https://daneshyari.com/article/1321677

Daneshyari.com