ELSEVIER

Contents lists available at SciVerse ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Stoichiometric H₂ production from H₂O upon Mn₂(CO)₁₀ photolysis

Jun Wei Kee, Che Chang Chong, Chun Keong Toh, Yuan Yi Chong, Wai Yip Fan*

Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543, Singapore

ARTICLE INFO

Article history: Received 18 July 2012 Received in revised form 10 October 2012 Accepted 19 October 2012

Keywords: Manganese Photochemistry Water activation Hydride

ABSTRACT

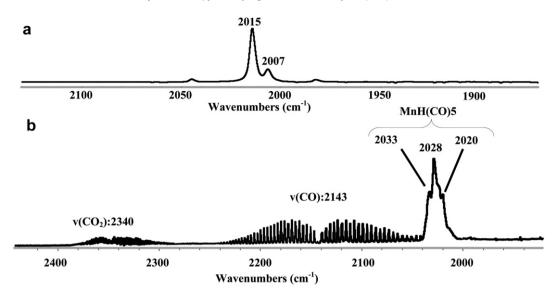
Photolysis of $Mn_2(CO)_{10}$ in an alkane/water biphasic system has resulted in the generation of 1.80 ± 0.16 mol of hydrogen per mol of $Mn_2(CO)_{10}$. Various studies including deuteration have indeed shown water to be the H_2 source while kinetic studies have indicated a strong correlation between the concentration of the key intermediate $MnH(CO)_5$ with the production rate of H_2 . Some of the oxygen atoms of water have been incorporated into a white solid assigned to $MnCO_3$. A mechanism accounting for $MnH(CO)_5$ formation from $Mn_2(CO)_{10}$ photolysis and subsequently H_2 production from $MnH(CO)_5$ has been proposed.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Hydrogen production from water upon photolysis of transition metal complexes has generated considerable interest as a cleaner source of energy to replace fossil fuels. In recent years, several examples of metal complexes containing platinum [1,2], cobalt in cobaloximes [3,4], iron in hydrogenase mimics [5-9], ruthenium [10], molybdenum [11] and [12] manganese have been reported to catalytically activate water. Oxidative addition of water to a metal centre which forms an essential part of the reaction pathway has been discussed in a recent review [13]. Apart from catalysis, understanding O-H bond activation of water is also of much importance. In a previous study by Byers et al. [14], photolysis of $Mn_2(CO)_8L_2$ (L = CO, P(OEt)₃ and PBu₃) and HCl afforded MnH(CO)₄L and MnCl(CO)₄L along with traces of H₂. Recently, our group has demonstrated stoichiometric photoactivation of water by cyclopentadienyl manganese tricarbonyl CpMn(CO)3 to produce hydrogen and hydrogen peroxide [15]. However, more examples and extensive studies are still required to understand the various photopathways, both stoichiometric and catalytic, leading to H₂ generation from water especially under ambient conditions.

In this paper, we report the stoichiometric hydrogen production upon photolysis of commercially-available dimanganese decacarbonyl $Mn_2(CO)_{10}$ in a biphasic mixture of alkane and water. Although $Mn_2(CO)_{10}$ is known to produce H_2 upon reaction with


HCl [14], our study demonstrates that the system still works with water. The key intermediate has been identified as MnH(CO) $_5$ and a mechanism has been proposed to account for the general features of the experimental data.

2. Results and discussion

Broadband irradiation (300–800 nm) of $Mn_2(CO)_{10}$ in a cyclohexane/water biphasic system resulted in the disappearance of its v_{CO} bands (2045, 2013, 2002 and 1983 cm $^{-1}$) and the concomitant appearance of two new peaks at 2015 cm $^{-1}$ and 2007 cm $^{-1}$ (Fig. 1a). The corresponding 1H NMR spectrum of the sample recorded in C_6D_6 solvent showed a signal at -7.9 ppm. These spectroscopic assignments could be matched closely to previously reported data for $MnH(CO)_5$ [16]. At the same time, the gas phase IR spectrum (Fig. 1b) of the headspace above the solution showed the production of CO, CO_2 and $MnH(CO)_5$ vapour [17]. The presence of $MnH(CO)_5$ was further confirmed upon formation of $MnH(CO)_4$ PPh₃ [18] in the presence of triphenylphosphine (PPh₃) under mild heating.

A series of control experiments has been carried out to understand how MnH(CO) $_5$ is generated. Photolysis of Mn $_2$ (CO) $_{10}$ in anhydrous cyclohexane or its thermal heating (up to $100\,^{\circ}$ C) in wet cyclohexane resulted in much slower decomposition of Mn $_2$ (CO) $_{10}$ and negligible signals of MnH(CO) $_5$. In a series of deuteration experiments, Mn $_2$ (CO) $_{10}$ photolysis in d $_{12}$ -cyclohexane/H $_2$ O yielded MnH(CO) $_5$ while the corresponding photolysis in cyclohexane/D $_2$ O mixture afforded carbonyl signals which could be matched to the literature values for MnD(CO) $_5$ [16] ($\nu_{CO}=2015~{\rm cm}^{-1}$ and $2006~{\rm cm}^{-1}$) (Fig. 2). The involvement of a cationic Mn(CO) $_5^+$ or Mn(CO) $_6^+$ intermediate

^{*} Corresponding author. Fax: +65 67791691. E-mail address: chmfanwy@nus.edu.sg (W.Y. Fan).

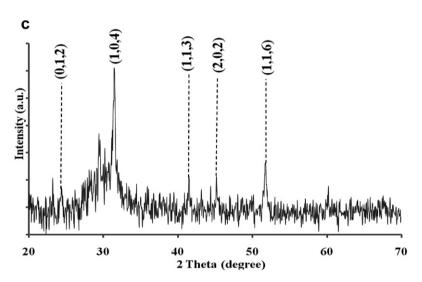
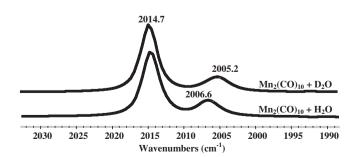



Fig. 1. FTIR spectra recorded after a 2-h broadband irradiation of $Mn_2(CO)_{10}$ in biphasic cyclohexane/water. (a) The production of $MnH(CO)_5$ (2015 and 2007 cm⁻¹) taken in the cyclohexane layer (b) the production of CO ($\nu_0 = 2143$ cm⁻¹), CO_2 ($\nu_0 = 2340$ cm⁻¹) and $MnH(CO)_5$ ($\nu_{CO} = 2033$, 2028 and 2020 cm⁻¹) in the headspace above the reaction mixture. (c) XRD analysis of the white precipitate $MnCO_3$.

has been ruled out as the photolysis of $Mn_2(CO)_{10}$ with tetra-n-butylammonium bromide did not give $MnBr(CO)_5$. In the presence of tetrafluoroboric acid HBF_4 in the aqueous layer, both rates of $Mn_2(CO)_{10}$ decomposition and $MnH(CO)_5$ formation were not

Fig. 2. FTIR spectrum of MnH(CO) $_5$ (2014.7 cm $^{-1}$ and 2006.6 cm $^{-1}$) or MnD(CO) $_5$ (2014.7 cm $^{-1}$ and 2005.2 cm $^{-1}$) recorded at 0.5 cm $^{-1}$ resolution after a 2-h broadband irradiation of Mn₂(CO) $_{10}$ in a biphasic cyclohexane/H₂O or cyclohexane/D₂O respectively.

affected significantly as the pH is decreased from 6 to 2, suggesting that H^+ ions do not have a significant role in the formation of MnH(CO)₅. From these data, it is evident that only light and water but no additives are required for MnH(CO)₅ formation.

Upon prolonged photolysis (>6 h) of the reaction mixture, a white solid has been obtained in 5–10% yield. The solid shows alkaline behaviour as it requires two equivalents of H⁺ (from HCl aqueous solution) for neutralization. An XRD (X-ray powder diffraction) analysis of the solid in Fig. 1c confirms its identity to be manganese carbonate MnCO₃ (JCPDS Card No.: 83-1763) [19–21].

Along with the MnH(CO)₅ formation, H₂ evolution has been observed throughout the photolysis until all the Mn₂(CO)₁₀ and MnH(CO)₅ have decomposed. The headspace mass spectrum indicated the production of H₂ at 1.80 ± 0.16 mol per mol of Mn₂(CO)₁₀ used. D₂ was also detected at 1.40 ± 0.10 mol per mol of Mn₂(CO)₁₀ for D₂O. The time profile of the H₂ evolution has been shown together with those of the respective IR signals of MnH(CO)₅ and Mn₂(CO)₁₀ in Fig. 3. The quantification of H₂ production is carried out relative to the amount of Mn₂(CO)₁₀ used since the latter could be weighed accurately, rather than based on the IR absorbance of

Download English Version:

https://daneshyari.com/en/article/1321945

Download Persian Version:

https://daneshyari.com/article/1321945

<u>Daneshyari.com</u>