

Contents lists available at SciVerse ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Organometallic complexes for nonlinear optics. 52. Syntheses, structural, spectroscopic, quadratic nonlinear optical, and theoretical studies of $Ru(C_2C_6H_4R-4)(\kappa^2-dppf)(\eta^5-C_5H_5)$ (R = H, NO₂)

Bandar A. Babgi^{a,b}, Ahmed Al-Hindawi^a, Graeme J. Moxey^a, Fazira I. Abdul Razak^a, Marie P. Cifuentes^a, Erandi Kulasekera^a, Robert Stranger^a, Ayele Teshome^c, Inge Asselberghs^c, Koen Clays^c, Mark G. Humphrey^{a,*}

^a Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia

^b Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

^c Laboratory of Chemical and Biological Dynamics, Centre for Research on Molecular Electronics and Photonics, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium

ARTICLE INFO

Article history: Received 30 September 2012 Received in revised form 30 December 2012 Accepted 31 December 2012

Dedicated to the memory of Professor Gordon Stone, an inspirational organometallic chemist.

Keywords: Crystal structure Ruthenium Alkynyl Nonlinear optics Density functional theory calculations

1. Introduction

The nonlinear optical (NLO) properties of organometallic complexes have come under considerable scrutiny during the past twenty years [1-4], the majority of studies being focused on quadratic nonlinearities and on complexes with a donor-bridgeacceptor composition. The field of organometallics in nonlinear optics was given initial impetus from the promising outcomes of studies with metallocenyl complexes [5], but more recently alkynyl complexes have also attracted significant attention [6–8]. Amongst metal alkynyl complexes, those of ruthenium are some of the most important due to their facile high-yielding syntheses [9,10], enhanced NLO coefficients [11,12], ease of use in construction of multimetallic complexes such as dendrimers [13], and reversible redox properties which afford the possibility of NLO switching [14].

ABSTRACT

The synthesis of $\operatorname{Ru}(C \equiv CC_6H_4$ -4-NO₂)(κ^2 -dppf)(η^5 -C₅H₅) (1) is reported, together with spectroscopic, X-ray structural, linear optical and quadratic nonlinear optical (NLO) studies of 1 and Ru(C \equiv CPh) (κ^2 -dppf)(η^5 -C₅H₅) (2), the last-mentioned using the hyper-Rayleigh scattering technique at 1064 nm. Quadratic nonlinearities for these dppf-containing complexes are comparable to those of their dppe-containing analogues and significantly greater than carbonyl-containing analogues. The linear optical and quadratic NLO properties of 1, 2 and their dppe-containing analogues have been rationalized by time-dependent density functional theory calculations.

© 2013 Elsevier B.V. All rights reserved.

We have previously probed the effect of acceptor group incorporation and π -bridge modification at metal alkynyl complexes, reporting the syntheses and NLO properties (by both electric fieldinduced second-harmonic generation, EFISH, and the hyper-Rayleigh scattering technique, HRS) of complexes of general formula Ru(4-C= CC_6H_4X)(PPh₃)₂(η^5 -C₅H₅). Nonlinearities of these complexes increase on proceeding to a strongly dipolar system (replacing X = H by $X = NO_2$) and π -system lengthening (proceeding from $X = NO_2$ to $X = C_6H_4$ -4-NO₂, C=CC₆H₄-4-NO₂, N=CHC₆H₄-4-NO₂, and Z- and E-CH=CHC₆H₄-4-NO₂, with the last-mentioned being the most efficient in terms of its quadratic NLO performance) [15–18]. We then explored the effect of metal and co-ligand variation in the series of complexes M(4-C=CC₆H₄-4- $NO_2(L_2)(\eta^5-C_5H_5)$ (M = Fe, Ru, Os, L_2 = dppe; M = Ru, Os, $L = PPh_3$; M = Ru, L = CO), for which quadratic nonlinearities increase as $M = Fe \le Ru \le Os$ and L = CO < phosphines [19]. The more subtle co-ligand modification (replacing $2 \times PPh_3$ with dppe) afforded unclear results, with β_{HRS} data for M(4-C=CC₆H₄-4- $NO_2(L_2)(\eta^5-C_5H_5)$ suggesting (M = Ru, $L_2 = 2PPh_3$) < (M = Ru,

^{*} Corresponding author. Tel.: +61 2 6125 2927; fax: +61 2 6125 0750. *E-mail address*: Mark.Humphrey@anu.edu.au (M.G. Humphrey).

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jorganchem.2012.12.039

 $L_2 = dppe$) and $(M = Os, L_2 = 2PPh_3) \approx (M = Os, L_2 = dppe)$ (within the error margins of the experiment). We have now returned to this question of the effect of co-ligand variation on quadratic non-linearity in metal alkynyl complexes (and thereby the potential of tuning the response), and report herein the synthesis of the new complex $Ru(C \equiv CC_6H_4-4-NO_2)(\kappa^2-dppf)(\eta^5-C_5H_5)$ incorporating the electro-active bidentate ligand 1,2-bis(diphenylphosphino)ferrocene, structural studies of both this complex and its non-nitro analogue $Ru(C \equiv CPh)(\kappa^2-dppf)(\eta^5-C_5H_5)$, spectroscopic and electrochemical characterization of these complexes, quadratic non-linearities from hyper-Rayleigh scattering measurements at 1064 nm, comparison to related extant experimental data, and theoretical studies employing density functional theory (DFT) and time-dependent DFT (TD-DFT) to rationalize the experimental outcomes.

2. Experimental

2.1. General experimental conditions and starting materials

All reactions were performed under a nitrogen atmosphere with the use of Schlenk techniques unless otherwise stated. Dichloromethane was dried by distilling over calcium hydride; all other solvents were used as received. Petrol is a fraction of petroleum spirits of boiling range 60–80 °C. Chromatography was performed on ungraded basic alumina. Phenylacetylene (Aldrich) was used as received. The following were prepared by the literature procedures: RuCl(κ^2 -dppf)(η^5 -C₅H₅) [20], HC=C₆H₄-4-NO₂ [21].

2.2. Instrumentation

Microanalyses were carried out at the Australian National University. UV-vis spectra of solutions in 1 cm quartz cells were recorded using a Cary 5 spectrophotometer; bands are reported in the form wavelength (nm) [extinction coefficient, $10^4 \text{ M}^{-1} \text{ cm}^{-1}$]. The infrared spectra were recorded as KBr discs using a Perkin-Elmer System 2000 FT-IR; peaks are reported in cm⁻¹. ¹H (300 MHz) and ¹³C (75 MHz) NMR spectra were recorded using an Inova-300 NMR spectrometer and ³¹P NMR spectra (121 MHz) were recorded using a Varian Mercury-300 FT NMR spectrometer. The spectra are referenced to residual chloroform (7.26 ppm), CDCl₃ (77.0 ppm), or external H₃PO₄ (0.0 ppm), respectively; atom labelling follows the numbering scheme in Chart 1. The high resolution ESI mass spectrum (HR ESI MS) was obtained utilizing a Bruker Apex 4.7T FTICR-MS instrument. Cyclic voltammetry measurements were recorded using a MacLab 400 interface and MacLab potentiostat from ADInstruments. The supporting electrolyte was 0.1 M (NBu₄ⁿ)PF₆ in distilled, deoxygenated CH₂Cl₂.

Chart 1. NMR labelling scheme for 1.

Solutions containing ca 1×10^{-3} M complex were maintained under nitrogen. Measurements were carried out at room temperature using Pt disc working-, Pt wire auxiliary- and Ag/AgCl reference electrodes, such that the ferrocene/ferrocenium redox couple was located at 0.56 V (peak separation ca. 0.10 V). Scan rates were typically 100 mV s⁻¹.

2.3. Synthesis of $Ru(C \equiv CC_6H_4 - 4 - NO_2)(\kappa^2 - dppf)(\eta^5 - C_5H_5)$ (1)

 $RuCl(\kappa^2-dppf)(\eta^5-C_5H_5)$ (210.2 mg, 0.278 mmol) and $HC \equiv CC_6H_4$ -4-NO₂ (41.5 mg, 0.282 mmol) were added to a flask containing MeOH (20 ml). A solution of NaOMe in MeOH (7.00 ml, 0.1 M) was added and the orange mixture was stirred at reflux until the formation of a red solution (ca. 15 min). The red solution was cooled to room temperature, resulting in the precipitation of a red powder that was collected by filtration, affording 1 (184.3 mg, 77%). Crystals of 1 suitable for single-crystal X-ray structural study were grown by slow diffusion of methanol into a dichloromethane solution at room temperature. Elemental analysis (C₄₇H₃₇FeNO₂₋ P₂Ru): calcd.: C: 65.14, H: 4.30, N: 1.62%. Found: C: 65.30, H: 4.18, N: 1.35%. HR ESI MS (C47H37FeNO2P2Ru): calculated: 882.0927, found: 882.0944. UV-vis (CH₂Cl₂): 469 nm (1.74), 273 nm (1.42). ¹H NMR (CDCl₃): 3.95, 4.04, 4.11, 5.06 (4 s, $4 \times 2H$, H₁, H₂, H₃, H₄), 4.27 (s, 5H, H₁₀), 7.08 (d, J_{HH} = 9 Hz, 2H, H₁₄), 7.18–7.73 (m, 20H, H₇, H₈, H₉), 7.99 (d, $J_{HH} = 9$ Hz, 2H, H₁₅). ¹³C NMR (CDCl₃): 68.3, 71.3, 73.2, 76.0 (C₁, C₂, C₃, C₄), 80.8 (C₁₂), 85.0 (C₁₀), 88.3 (t, $J_{CP} = 35$ Hz, C₅), 115.6 (C₁₁), 123.9 (C₁₄), 127.3 (m), 128.8, 129.3, 134.0 (m) (C₇, C₈, C₉), 130.5 (C₁₅), 137.5 (C₁₃), 140.4 (m, C₆), 142.7 (C₁₆). ³¹P NMR (CDCl₃): 55.9.

2.4. Synthesis of $Ru(C \equiv CPh)(\kappa^2 - dppf)(\eta^5 - C_5H_5)$ (2)

This complex has been prepared previously by an alternative procedure in 98% yield [22]. RuCl(κ^2 -dppf)(η^5 -C₅H₅) (113.7 mg, 0.15 mmol) and HC=CPh (0.05 ml, 0.46 mmol) were added to a flask containing MeOH (15 ml). A solution of NaOMe in MeOH (7.00 ml, 0.1 M) was added and the orange mixture was stirred at reflux until the formation of a red solution (ca. 15 min). The red solution was cooled to room temperature, resulting in the precipitation of a yellow powder that was collected by filtration, affording **2** (103.0 mg, 83%). Crystals of **2** suitable for X-ray diffraction study were grown by slow diffusion of methanol into a dichloromethane solution at room temperature. UV–vis (CH₂Cl₂): 402 nm (0.14), 311 nm (2.18), 273 nm (1.36). ³¹P NMR (CDCl₃): 56.0.

2.5. Structure determinations

Intensity data were collected using an Enraf-Nonius KAPPA CCD at 200 K with Mo K α radiation ($\lambda = 0.7170$ Å). Suitable crystals were immersed in viscous hydrocarbon oil and mounted on a glass fibre that was mounted on the diffractometer. Using psi and omega scans $N_{\rm t}$ (total) reflections were measured, which were reduced to $N_{\rm o}$ unique reflections, with $F_0 > 2\sigma(F_0)$ being considered "observed". Data were initially processed and corrected for absorption using the programs DENZO [23] and SORTAV [24]. The structures were solved using direct methods, and observed reflections were used in least squares refinement on F^2 , with anisotropic thermal parameters refined for non-hydrogen atoms. Hydrogen atoms were constrained in calculated positions and refined with a riding model. Structure solutions and refinements were performed using the programs SHELXS-97 and SHELXL-97 [25] through the graphical interface Olex2 [26], which was also used to generate the figures. Crystal data for 1: $C_{47}H_{37}FeNO_2P_2Ru$, M = 866.64, red block, $0.10 \times 0.10 \times 0.09 \text{ mm}^3$, triclinic, space group *P*-1 (no. 2), a = 9.926(2), b = 12.406(3), c = 15.571(3) Å, $\alpha = 97.23(3),$

Download English Version:

https://daneshyari.com/en/article/1322827

Download Persian Version:

https://daneshyari.com/article/1322827

Daneshyari.com