Journal of Organometallic Chemistry 791 (2015) 141-147

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

New types of bi- and tri-dentate pyrrole-piperazine ligands and related zinc compounds: Synthesis, characterization, reaction study, and ring-opening polymerization of ε -caprolactone

Ming-Chun Wu^a, Ting-Chia Hu^a, Ya-Chun Lo^b, Ting-Yu Lee^{b,*}, Chia-Her Lin^c, Wei-Yi Lu^d, Chu-Chieh Lin^d, Amitabha Datta^a, Jui-Hsien Huang^{a,*}

^a Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan, ROC

^b Department of Applied Chemistry, National University of Kaohsiung, 811, Taiwan, ROC

^c Department of Chemistry, Chung-Yuan Christian University, Chun-Li 320, Taiwan, ROC

^d Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan, ROC

ARTICLE INFO

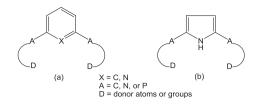
Article history: Received 23 January 2015 Received in revised form 14 April 2015 Accepted 2 May 2015 Available online 22 May 2015

Keywords: Pyrrole-piperazine Caprolactone Zinc Ring-opening polymerization

ABSTRACT

Reactions of one or two equivalents of formaldehyde and phenylpiperazine with pyrrole in methanol or ethanol generated substituted pyrrole ligands C_4H_3NH -[2- $CH_2N(CH_2CH_2)_2NPh$] (1) and C_4H_2NH -[2,5-[$CH_2N(CH_2CH_2)_2NPh$]_2) (2), respectively. Reacting 1 with one equivalent of ZnMe₂ in toluene generated a di-zinc compound 3, {ZnMe{C4H_3N-[2- $CH_2N(CH_2CH_2)_2NPh$]}_2, in moderate yield. Further reacting 3 with two equivalents of *p*-cresol in toluene overnight afforded pheoxide bridged di-zinc compound 4, {Zn(μ -O-C₆H₄-4-Me){C4H₃N-[2- $CH_2N(CH_2CH_2)_2NPh$]}_2. Similarly, the reactions of one and two equivalents of tridentate substituted pyrrole ligand 2 with ZnMe₂ afforded Zn compounds ZnMe{C4H₂N-{2,5-[CH₂N(CH₂CH₂)_2NPh]₂}] (5) and Zn{C4H₂N-{2,5-[CH₂N(CH₂CH₂)_2NPh]₂}] (6), respectively, in moderate yield. All of these compounds were characterized using ¹H and ¹³C NMR spectroscopy. Compound 5 is relatively air and moisture sensitive and decomposes during the recrystallization process to yield a tri-Zn cluster, {Zn(μ ₂-OH){C4H₂N-{2,5-[CH₂N(CH₂CH₂)_2NPh]₂}} (7). The molecular geometries of compounds 3, 4, 6, and 7 were also determined using single crystal X-ray diffractometric analysis. Compounds 3, 4, and 6 were used as initiators for the ring opening polymerization of *e*-caprolactone, and all of the zinc compounds showed high conversion with broad or bimodal molecular weight distributions.

© 2015 Elsevier B.V. All rights reserved.

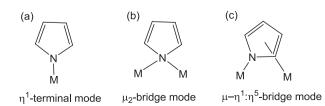

Introduction

Tridentate pincer type ligands (Scheme 1(a)) are widely used in the synthesis of organometallic catalysts due to their versatile bonding modes and strong coordinating ability toward metal atoms [1–4]. Among of these pincer-type ligands, tridentate pyrrolylbased pincer ligands, where the three nitrogen coordinating sites originated from pyrrole and two side arms, have been studied by several groups (Scheme 1(b)) [5–11]. Pyrrole, a component in porphyrins, such as heme and chlorophyll, can act as ligands and bind to metals in different bonding modes (Scheme 2). The pyrrole ring can bind to metal *via* different modes, such as η^1 -terminal mode [12-16], μ_2 -bridge mode [17-22], and μ - η^1 : η^5 -bridge mode [23-27]. By combing the versatile pyrrole ring and pincer-type ligands [28,29], we developed a new type of pyrrolyl-based pincer ligand containing piperazine fragments, which may offer unique molecular geometries for metal complexes.

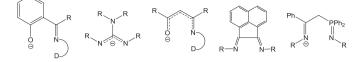
Ring-opening polymerization of the ε -caprolactone (CL) monomer is a general method for generating polycaprolactone [30–35] using catalysts, such as stannous octoate [36,37]. A wide range of catalysts for the ring opening polymerization of ε -caprolactone have been reviewed [38–42]. However, using stannous as a catalyst for ring opening polymerization has raised concern over health and safety. Therefore, more human health-friendly metal catalysts, such as Mg [43–46], Ca [47–50], and Zn [51–55], have been studied, and a variety of ligand systems have been adopted (Scheme 3). Therefore, we also studied the catalytic activity of these new metal complexes for the ring-opening polymerization of ε -caprolactone.

^{*} Corresponding authors. Tel.: +886 4 7232105x3512; fax: +886 4 7211190.

E-mail addresses: tingyulee@nuk.edu.tw (T.-Y. Lee), juihuang@cc.ncue.edu.tw (J.-H. Huang).


Scheme 1. Pincer-type ligands (a) aromatic or (b) pyrrole-based ligands.

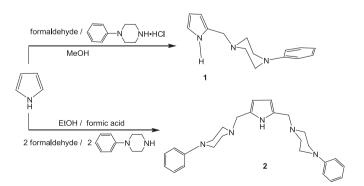
Results and discussion


Synthesis and characterization

New types of bi-and tri-dentate pyrrole-piperazine ligands were synthesized using similar procedures as reported in the literature (Scheme 4) [56]. Using one or two equivalents of formaldehyde and phenylpiperazine with pyrrole in methanol or ethanol generated the substituted pyrrole ligands $C_4H_3NH_{2-CH_2N(CH_2CH_2)_2NPh}$ (1) and $C_4H_2NH_{2,5-[CH_2N(CH_2CH_2)_2NPh]_2}$ (2), respectively, via the Mannich reaction. These two substituted pyrrole ligands 1 and 2 have been characterized using ¹H and ¹³C NMR spectroscopy and Xray single crystal diffractometry. A characteristic resonance for the methylene protons of side chain substituent CH₂N(CH₂CH₂)₂NPh in the ¹H NMR spectrum in CDCl₃ shows a singlet at δ 3.57 and 3.52 for 1 and 2, respectively. In addition, the bidentate pyrrole ligand 1 shows an asymmetrical manner on the three CH protons of the pyrrole ring with three resonances δ at 6.08, 6.14, and 6.76. In contrast, the tri-dentate symmetrical substituted pyrrole ligand 2 shows only one resonance at δ 5.95 for the two CH protons of the pyrrole ring.

Reacting the bidentate pyrrole ligand **1** with one equivalent of ZnMe₂ in toluene generated a di-zinc compound 3, {ZnMe{C₄H₃N-[2-CH₂N(CH₂CH₂)₂NPh]}}, in moderate yield after work-up (Scheme 5). Colorless crystals of **3** were obtained from a saturated methylene chloride solution at -20 °C. The methylene protons of the side chain substituent, $CH_2N(CH_2CH_2)_2NPh$, of **3** show a singlet at δ 3.69 in the ¹H NMR spectrum in CDCl₃, which is shifted downfield from its corresponded peak in ligand 1. The high-field shift resonance for Zn–Me is observed at δ –0.39, which is comparable to the Zn–Me resonances reported in the literature [57–59]. It is interesting to note that the methylene protons of the piperazine ring are split into three multiplets at δ 2.59, 3.12, and 3.54 with an integration ratio of 1:2:1. Presumably, the steric effect and the ring constraint on the molecular geometry give rise to the splitting. Variable temperature ¹H NMR spectra of **3** in CDCl₃ did not resolve the splitting or reach the high temperature limit in the range of -45to 20 °C. Further reacting 3 with 2 equivalents of p-cresol in toluene overnight afforded phenoxide bridged di-zinc compound 4, ${Zn(\mu-O-C_6H_4-4-Me)}{C_4H_3N-[2-CH_2N(CH_2CH_2)_2NPh]}$, in moderate yield. The ¹H NMR spectrum of **4** in CDCl₃ shows a singlet at δ 2.22, indicating the methyl groups of the two phenoxide fragments. The methylene protons of the side chain substituent $CH_2N(CH_2CH_2)_2NPh$ has shifted to δ 3.83.

Scheme 2. Bonding modes of pyrrole to metals.


Scheme 3. Ligand systems involved in the catalysts for the ring-opening polymerization of *e*-caprolactone.

Reacting one and two equivalents of tridentate substituted pyrrole ligand **2** with ZnMe₂ afforded Zn compounds, ZnMe {C₄H₂N-{2,5-[CH₂N(CH₂CH₂)₂NPh]₂}} (**5**) and Zn{C₄H₂N-{2,5-[CH₂N(CH₂CH₂)₂NPh]₂}} (**6**), respectively, in moderate yield (Scheme 6). The ¹H NMR spectra of **5** and **6** both show characteristic resonances of methylene protons of the side chain substituent CH₂N(CH₂CH₂)₂NPh at δ 3.60 and 3.61, respectively. Similar to compound **3**, the high-field shift resonance for the Zn–*Me* of compound **5** is observed at δ –0.35. Compound **5** is thermally unstable and is sensitive to air and moisture. Exposing **5** to air or increasing the reaction time both result in unidentified compounds. However, during the recrystallization process of compound **5**, a small amount of moisture leaked into the flask and caused the decomposition of compound **5**, generating a tri-Zn compound, {Zn(µ₂-OH){C₄H₂N-{2,5-[CH₂N(CH₂CH₂)₂NPh]₂}} (**7**).

Molecular geometries of 1, 3, 4, 6 and 7

A summary of the crystal data collection for compounds **1**, **3**, **4**, **6** and **7** and their selected bond lengths and angles are listed in Tables 1 and 2, respectively. All of the crystals of these compounds suitable for single crystal X-ray diffractometric analysis were obtained from saturated solutions at -20 °C, where **1**, **3**, and **4** used methylene chloride as the solvent and **6** and **7** used toluene.

The molecular structure of **1** is shown in Fig. 1 and bond lengths of pyrrole rings and side chain are comparable with similar pyrrole ligands reported in the literature [60-64]. The molecular geometry of 1 shows intramolecular hydrogen bonding with a bond length of N(2)... H(1) ca. 2.95 Å, consistent with the values reported in the literature [65,66]. The molecular structures of **3** and **4** are shown in Figs. 2 and 3, respectively. Both compounds exist in dimeric geometries; however, the bonding modes of the pyrrolyl rings in 3 and **4** are quite different. The two pyrrolyl rings of compound **3** act as μ_2 -bridging ligands using the two pyrrole nitrogen atoms, and the two zinc atoms form a diamond plane with bond lengths of Zn(1)-N(1) and Zn(1)-N'(1) at 2.0478(17) and 2.2429(17) Å, and the bond angles of Zn(1)-N(1)-Zn'(1) and N(1)-Zn(1)-N'(1) are 89.04(6)° and 108.21(6)°, respectively. The results are quite similar to those reported in the literature for a μ_2 -bridged pyrrole ring [17–22]. The bidentate ligands bind to the Zn atoms with an angle

Scheme 4. Synthesis of bi- and tri-dentate pyrrole-piperazine ligands 1 and 2.

Download English Version:

https://daneshyari.com/en/article/1323210

Download Persian Version:

https://daneshyari.com/article/1323210

Daneshyari.com