ELSEVIER

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Review

The continuing story of the diammoniate of diborane

Qianyi Zhao ^a, Jiaxuan Li ^a, Ewan J.M. Hamilton ^b, Xuenian Chen ^{a, *}

^b Department of Chemistry and Biochemistry, The Ohio State University at Lima, Lima, OH 45804, USA

ARTICLE INFO

Article history: Received 31 March 2015 Received in revised form 30 April 2015 Accepted 2 May 2015 Available online 23 May 2015

Keywords:
Diammoniate of diborane
Structure
Mechanism
Synthesis
Conversion
Hydrogen storage

ABSTRACT

The diammoniate of diborane ([H₂B(NH₃)₂][BH₄], DADB) is an ionic dimer of ammonia borane (H₃NBH₃, AB). It has received much less attention in the past few decades than AB, although it has the same high hydrogen content (19.6%). In this review, the important events in the development of DADB are summarized: its serendipitous discovery, formulation, characterization, formation mechanism, preparation, and relationship with AB. Focus is given to its competing formation with AB and potential application as a hydrogen storage medium.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

As existing reserves of fossil fuels decrease, energy crises are a major threat to our way of life. Therefore, looking for alternative energy sources is a matter of global urgency. Hydrogen is proposed as a potential alternative energy carrier to mitigate these potential energy crises and minimize environmental impacts [1–4]. However, efficient and safe hydrogen storage techniques remain challenges in fuel cell power applications [5,6].

Current hydrogen storage systems can be divided into two main categories, namely physisorption and chemical storage media [7]. The former involves porous materials such as zeolites [8,9], MOFs [10,11], carbon materials (nanotubes, fullerenes, graphene) [12,13] and organic polymers [14–16]. The latter contains hydrogen in chemically bonded or complexed forms [17,18], or incorporated into organic molecules [19–22]. This may be represented by metal hydrides, borohydrides, ammonia-like complexes, alcohols, formic acid, and so on. Among these, ammonia borane (H₃NBH₃, AB) has attracted the greatest research interest due to its stability and high hydrogen storage capacity (19.6%) [23–26]. In comparison, the diammoniate of diborane ([H₂B(NH₃)₂][BH₄], DADB), an ionic dimer of AB with the same hydrogen content (19.6%), has been much less studied.

Corresponding author.

E-mail address: xnchen@htu.edu.cn (X. Chen).

In this review, we highlight important events in the development of the diammoniate of diborane: its serendipitous discovery, formulation, characterization, mechanism of formation, preparation and relationship with AB.

2. Serendipitous discovery of DADB

The DADB was first prepared by Alfred Stock in 1923 [27,28] from the reaction of ammonia (NH₃) and diborane (B₂H₆) under extreme conditions. As described in the literature, the crucial factors to obtain pure DADB include beginning with a low temperature ($-140\,^{\circ}\text{C}$) mixture of B₂H₆ in NH₃, and removing excess NH₃ as the temperature was allowed to rise to $-80\,^{\circ}\text{C}$. Subsequent research showed that the discovery of DADB was serendipitous, as if it was not treated with particular care, other by-products would appear, leading to erroneous conclusions [29-31].

Based on Lewis acid-base considerations, it is reasonable to expect that the addition reaction between NH_nR_{3-n} and B_2H_6 will take place to form $NH_nR_{3-n} \cdot BH_3$. For example, $N(CH_3)_3$ reacts with B_2H_6 to give trimethylamine-borane, $(CH_3)_3N \cdot BH_3$ (Eqn. (1)) [32,33]. However, the acid-base reactions of B_2H_6 and NH_3 are far more complex. As shown in Eqn. (2), one mole of B_2H_6 takes up two moles of NH_3 , giving $B_2H_6 \cdot 2NH_3$. The formula of $B_2H_6 \cdot 2NH_3$ for the solid product was supported by a variety of careful experiments: the tensiometric study by Stock and Pohland [34], then molecular weight determinations (freezing-point depression by Rathjens and

Pitzer [35], and high-precision freezing-point depression by Egan and Shore [36]). Furthermore, molecular weight measurements showed that the compound dissociated into 2 ions at high dilution, indicating that $B_2H_6 \cdot 2NH_3$ is not a simple, neutral adduct of B_2H_6 and NH_3 . Thus the historical and accepted name, the diammoniate of diborane (DADB), stemming from the molecular formula $B_2H_6 \cdot 2NH_3$, does not genuinely represent its chemical formula.

$$B_2H_6 + 2 N(CH_3)_3 \rightarrow 2(CH_3)_3 N \cdot BH_3$$
 (1)

$$B_2H_6 + 2NH_3 \rightarrow B_2H_6 \cdot 2NH_3$$
 (2)

3. Formulation and characterization

3.1. History of the formulation of DADB

The structure of $B_2H_6 \cdot 2NH_3$ continued to puzzle boron chemists for decades. Four possible structural formulas were proposed before a series of experiments were conducted which identified the correct formula as $[H_2B(NH_3)_2][BH_4]$ (Fig. 1) [30,37-42].

Structure I was initially proposed by Stock [43] but was quickly rejected due to a lack of evidence to support its validity [44]. Later, Schlesinger and Burg proposed a second possible formula for DADB, [NH₄][H₃BNH₂BH₃] (**II**), following replacement of the ammonium ion by sodium ion after reaction of B2H6.2NH3 with sodium in liquid ammonia (Eqn. (3)) [45]. That one equivalent of hydrogen was produced per mole of diborane offered only indirect proof for this formulation. It was not until 2010 that the existence of the [H₃BNH₂BH₃] anion was confirmed as its sodium salt, NaBH₃NH₂BH₃, prepared by the reaction of Na or NaNH₂ with AB [46]. Further investigation of the reaction between an alkali metal and an ammonia solution of the diammoniate of diborane by Schaeffer, Adams and Koenig indicated that a hydride shift occurred within the anion [H₃BNH₂BH₃] (Eqn. (4)). Accordingly, they proposed that the revised formula [(NH₄)(H₂BNH₂)(BH₄)] (III) might be the best representation of the chemical nature of B₂H₆·2NH₃ [47].

$$[NH_4][H_3BNH_2BH_3] + Na \!\rightarrow\! NaBH_3NH_2BH_3 + NH_3 + 0.5\ H_2$$

$$[BH_3NH_2BH_2]^- \rightarrow [BH_4]^- + NH_2BH_2$$
 (4)

In 1958, Parry and Shore provided strong evidence that the borohydride ion, [BH4], was contained in DADB, and the data available were consistent with the structural formula [H₂B(NH₃)₂] [BH₄] (**IV**) [41]. Although this moiety was mentioned briefly in the literature as early as 1947 [48], it was excluded without further serious examination [38]. The direct proof provided by Parry and Shore includes the following: (a) the DADB can react with NH₄Cl or (NH₄)₂SO₄ to rapidly release H₂ (possible via the unstable salt NH₄BH₄) [42], but it does not react with NaBH₄, demonstrating that there is no [NH₄]⁺ ion present in the formula of DADB; (b) the reaction between DADB and sodium in liquid ammonia is comparable to that of the bromide analogue [H₂B(NH₃)₂]Br, indicating the existence of the cation $[H_2B(NH_3)_2]^+$; (c) $[Mg(NH_3)_6](BH_4)_2$ can precipitate from a liquid ammonia solution of DADB and two thirds of the hydridic hydrogen in DADB hydrolyze easily, consistent with the presence of the [BH₄] ion. In addition, the Raman spectrum obtained by Tayler, Schultz and Emery further confirms the presence of the [BH₄] moiety [49]. Collectively, this evidence strongly supports the authentic formulation of B₂H₆·2NH₃ as [H₂B(NH₃)₂] $[BH_4].$

$[NH_4]_2[B_2H_4]$	I
[NH ₄][H ₃ BNH ₂ BH ₃]	II
[(NH ₄)(BH ₂ NH ₂)(BH ₄)]	III
[H ₂ B(NH ₃) ₂][BH ₄]	IV

Fig. 1. Four proposed structures of DADB.

3.2. Solution NMR of DADB

Due to the instability of DADB in organic solvents at ambient temperature, almost all available spectroscopic characterizations (NMR and Raman) were carried out at temperatures below -35 °C [49–52]. The ¹¹B NMR spectrum at -40 °C contains a quintet at $\delta=-38.5$ ppm for BH_4 and a broad signal at $\delta=-15.2$ ppm related to BH_2 (Fig. 2) [50]. The broad signal of BH_2 is due to quadrupole interactions of boron at low temperatures, and is resolved into a triplet above 0 °C [53]. In liquid ammonia, a triplet for BH_2 could also be observed. In the ¹H NMR, two typical groups of peaks appear at $\delta=0.10$ ppm (quartet) for BH_4 and around $\delta=2.08$ ppm as a broad resonance for BH_2 . Both signals are converted to sharp singlets at the corresponding chemical shifts in the boron-decoupled ¹H{\frac{11}{18}} NMR spectra (Fig. 2) [50].

3.3. Crystal structure of DADB

The crystal structure of DADB was first obtained by Autrey in 2010 by a combination of X-ray and neutron powder diffraction analyses [54] (Fig. 3). Similar to the previously reported $[H_2B(NH_3)_2]^+Cl^-[55]$, the DADB crystallizes in a tetragonal unit cell attributed to the space group I4/mcm but with differences in the arrangement of $[H_2B(NH_3)_2]^+$ ions. As observed in the crystal structure of AB, B $-H\cdots H-N$ dihydrogen bonds [56,57] are also observed in solid state of DADB (Fig. 3).

4. Formation mechanism and preparation

4.1. Formation mechanism

(3)

The confirmation of the solid state structure of DADB raised the question of how NH₃ might interact with B_2H_6 to give a different result from that observed for N(CH₃)₃. A plausible explanation may be given *via* a different cleavage pattern for B_2H_6 , namely symmetric or asymmetric cleavage (Fig. 4) [41]. Symmetric cleavage (blue) leads to a non-ionic or covalent product, as in the case of (CH₃)₃N·BH₃, whereas asymmetric cleavage (red) produces the ionic species $[H_2B(NH_3)_2][BH_4]$.

In consideration of the preparation of DADB, processes that should be borne in mind include (a) the adsorption of B_2H_6 onto solid NH₃ (at low temperature, $-140~^{\circ}$ C, and in the presence of excess NH₃) without affecting the bridging H atoms in B_2H_6 ; (b) upon subsequent increase of the temperature from $-140~^{\circ}$ C to $-80~^{\circ}$ C, it is believed that the system undergoes a rapid conversion to a more stable compound; (c) subsequent removal of excess NH₃ at $-78~^{\circ}$ C leads to DADB [47]. Based on the experimental facts, Shore and Parry suggested that the structure of the intermediate formed in step (b) might be a singly-bridged complex NH₃BH₂(μ -H)BH₃ (ammonia diborane, AaDB), formed by breaking one B–H–B bond and can be assigned as an intermediate in the

Download English Version:

https://daneshyari.com/en/article/1323257

Download Persian Version:

https://daneshyari.com/article/1323257

<u>Daneshyari.com</u>