

Available online at www.sciencedirect.com

Journal ofOrgano metallic Chemistry

Journal of Organometallic Chemistry 690 (2005) 3044-3053

www.elsevier.com/locate/jorganchem

Reactions of the unsaturated triosmium cluster [(μ -H)Os₃(CO)₈(Ph₂PCH₂P(Ph)C₆H₄)] with HX (X = Cl, Br, F, CF₃CO₂, CH₃CO₂): X-ray structures of [(μ -H)Os₃(CO)₇(η^1 -Cl)(μ -Cl)₂(μ -dppm)], [(μ -H)₂Os₃(CO)₈(Ph₂PCH₂P(Ph)C₆H₄)]⁺[CF₃O]⁻ and the two isomers of [(μ -H)Os₃(CO)₈(μ -Cl)(μ -dppm)]

Shariff E. Kabir ^{a,*}, Md. Arzu Miah ^a, Nitai C. Sarker ^a, G.M. Golzar Hossain ^b, Kenneth I. Hardcastle ^c, Dalia Rokhsana ^d, Edward Rosenberg ^{d,*}

^a Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh ^b Department of Chemistry, Cardiff University, P.O. Box 912, Park Place, Cardiff CF10 3TB, UK

^c Department of Chemistry, Emory University, Atlanta, GA 30322, USA

^d Department of Chemistry, The University of Montana, 32 Campus Drive, Missoula, MT 59812, USA

Received 10 March 2005; revised 22 March 2005; accepted 22 March 2005 Available online 11 May 2005

Abstract

Treatment of the electronically unsaturated cluster $[(\mu-H)Os_3(CO)_8(Ph_2PCH_2P(Ph)C_6H_4)]$ (1) with HCl gas at ambient temperature in dichloromethane afforded (μ -H)Os₃(CO)₈(μ -Cl)(μ -dppm) (2) and $[(\mu-H)Os_3(CO)_7(\eta^1-Cl)(\mu-Cl)_2(\mu-dppm)]$ (3). Thermolysis of **2** at 110 °C led to an isomer of **2**, **4**. A similar reaction of **1** with HBr gas gave $[(\mu-H)Os_3(CO)_8(\mu-Br)(\mu-dppm)]$ (5) as the only product which does not isomerize at 110 °C. In sharp contrast, treatment of **1** with HF gas gave the protonated species $[(\mu-H)Os_3(CO)_8(\mu-PCH_2P(Ph)C_6H_4)]^+$ (6). Treatment of **1** with CF₃CO₂H also gave cation **6** whereas CH₃CO₂H yielded $[(\mu-H)Os_3(CO)_8(\mu-\eta^2-CH_3CO_2)(\mu-dppm)]$ (7). Structures of **2**, **3**, **4** and **6** were established crystallographically. In **2**, both the chloride and the hydride ligands simultaneously bridge the same Os–Os edge and the dppm spans another Os–Os bond whereas in **4**, all the three ligands bridge the same Os–Os edge. Compound **3** is comprised of an open Os₃ arrangement in which one chloride bridges the open Os··Os edge, another chloride and a hydride mutually bridge an Os–Os bond and the third chloride is terminally coordinated to one of the Os atoms of the dppm bridged edge. The cation **6** consists of a triangle of osmium atoms in which the shortest Os–Os edge is bridged by a hydride and the metallated phenyl ring and the longest edge is bridged by another hydride and the diphosphine ligand.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Triosmium clusters; Electronically unsaturated; Protic acid; Thermolysis; X-ray structures

* Corresponding authors. Tel.: +1 406 243 2592; fax: +1 406 243 4227.

E-mail addresses: skabir_ju@yahoo.com (S.E. Kabir), edward. rosenberg@mso.umt.edu (E. Rosenberg).

1. Introduction

The reactions of triosmium carbonyl clusters with protic acids have been thoroughly investigated and found to exhibit a range of reactivity patterns [1–8].

⁰⁰²²⁻³²⁸X/\$ - see front matter @ 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2005.03.041

Most common is simple protonation to give cationic hydrido species in which the hydride adopts a bridging coordination site [1–5] although cleavage of a metalcarbon [6] or a metal-metal bond [7] are known to occur as well. For example, the parent compound $[Os_3(CO)_{12}]$ reacts with concentrated H₂SO₄ to give the cationic species $[(\mu-H)Os_3(CO)_{12}]^+$ [1]. The protonation of electron rich mono- and diphosphine derivatives occur more readily on treatment with weaker acids such as CF_3CO_2H . The unsaturated cluster [(μ - $H_{2}Os_{3}(CO)_{10}$ and its tertiary phosphine substituted derivatives $[(\mu-H)_2Os_3(CO)_9(L)]$ (L = PEt₃, or PPh₃) react with CF_3CO_2H to give the cationic clusters [(μ - $H_{3}Os_{3}(CO)_{10}^{\dagger}$ and $[(\mu-H)_{3}Os_{3}(CO)_{9}L]^{\dagger}$, respectively [8]. The cyclometallated compound $[(\mu-H)_2Os_3(CO)_9 (\mu_3 - P(C_6H_4)Ph)$] reacts with Brønsted acids HX via a protonation followed by anion coordination to give the addition products $[(\mu-H)_2Os_3(X)(CO)_9(\mu-PPh_2)]$ $(X = F, Cl, Br \text{ or } CF_3CO_2)$ but with HBF₄ only the protonated complex $[(\mu-H)_3Os_3(CO)_9(\mu_3-P(C_6H_4)Ph)]^+$ is obtained [9]. In some cases, stable ploynuclear species where the acid's conjugate base has coordinated to the cluster in place of an organic ligand or a metal-metal bond can be isolated. For example, Shapley and co-workers [6] reported that the triflate compound $[(\mu-H)_2Os_3(CO)_9(O_3SCF_3)_2]$ reacts with CF₃CO₂H and CH₃CO₂H to afford the mixed oxyanion ligand clusters $[(\mu-H)_2Os_3(CO)_9(\mu,\eta^2-O_2CCF_3)_2(\eta^1-O_3SCF_3)]$ and $[(\mu-H)_2Os_3(CO)_9(\mu,\eta^2-O_2CCH)_2(\eta^1-O_3SCF_3)]$. We also reported that protonation of µ-vinyloxy ligand in $[(\mu-H)Os_3(CO)_{10}(\mu-OCH=CH_2)]$ with HX leads to the compounds $[(\mu-H)Os_3(CO)_{10}(\mu-X)]$ (X = Cl, CF₃CO₂) with liberation of aldehyde via the intermediate addition species $[(\mu-H)Os_3(CO)_{10}(\mu-OCHXCH_3)]$ [10]. Such acid adducts of the general formula $[(\mu-H)Os_3 (CO)_{10}(\mu-X)$] (X = RCO₂, halogen, MeO) are also available from the lightly stabilized cluster [Os₃- $(CO)_{10}(MeCN)_2$ [11,12]. A few years ago we reported the first example of direct adduct formation not accompanied by ligand displacement or metal-metal bond cleavage from the reactions of the μ_3 -imidoyl $[(\mu-H)Os_3(CO)_9(\mu_3-\eta^2-C=NCH_2CH_2CH_2-)]$ cluster $[(\mu-H)_2Os_3(CO)_9(\mu_3-\eta^2-$ HX with to afford $C=NCH_2CH_2CH_2-)$]X (X = Cl, Br, CF₃CO₂, CF₃SO₃) [13]. We have recently reported [14] that the electrondeficient quinoline triosmium clusters [(µ-H)Os₃(CO)₉- $(\mu_3 - \eta^2 - XC_9H_6N)$] (X = H, 5-NH₂, 6-NH₂, 3-NH₂, 5-Br, 5-CH₃) all undergo simple protonation with both coordinating (CF₃CO₂H) and non-coordinating acids (HBF₄).

The reactions of the coordinatively unsaturated triosmium cluster $[(\mu-H)Os_3(CO)_8(\mu_3-\eta^3-Ph_2PCH_2P(Ph)-C_6H_4)]$ (1) with a wide variety of small inorganic and organic ligands such as CO [15], H₂[16], PR₃ [17], P(OR)₃ (R = Me, Et, Pr^{*i*}, Bu or Ph) [17], PPh₂H [18], RC=CR (R = Ph, C₆H₄Me, Me or CF₃) [19], [Au(PPh₃)]PF₆ [20], EtSH [21], CH₃CH(CH₃)SH [21], PhSH [21], pySH [22], HSCH₂CH₂SH [23], HSCH₂CH₂-CH₂SH [23], and Se [24] that afford many interesting and potentially useful compounds have been investigated. Our recent studies of the reactivity of **1** toward CH₂CN₂ [25] and silanes [26] have uncovered some examples of its distinctly different reactivity patterns compared with unsaturated benzoheterocyclic triosmium clusters [27]. Herein, we report our results on the investigations of the reactions of **1** with a series of Brønsted acids. It was of interest to examine whether structurally diverse products would also be accessible in these systems.

2. Results and discussion

When HCl gas was bubbled through a dichloromethane solution of the electron-deficient cluster 1 at ambient temperature for 2 min, the initial green solution immediately turned orange and two compounds [(µ-H)Os₃- $(CO)_8(\mu-Cl)(\mu-dppm)$] (2) and $[(\mu-H)Os_3(CO)_7(\eta^1-Cl) (\mu$ -Cl)₂(μ -dppm)] (3) were isolated in 85% and 10% yields, respectively, after chromatographic separation. Both compounds 2 and 3 have been characterized by a combination of spectroscopic data and single-crystal X-ray diffraction analysis. An ORTEP diagram of the molecular structure of 2 is depicted in Fig. 1, crystal data are given in Table 1 and selected bond distances and bond angles are listed in Table 2. The molecule consists of a triangular cluster of osmium atoms with eight terminal carbonyl groups, one bridging chloride, one bridging hydride and a bridging dppm ligand. Three CO ligands are bound to Os(1) and Os(2) atom while Os(3) bears two carbonyls. The chloride and hydride

Fig. 1. Molecular structure of $[(\mu-H)Os_3(CO)_8(\mu-Cl)(\mu-dppm)]$ (2) showing the atom-labeling scheme. Thermal ellipsoids are drawn at the 50% probability level.

Download English Version:

https://daneshyari.com/en/article/1324172

Download Persian Version:

https://daneshyari.com/article/1324172

Daneshyari.com