Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Communication

Chlorocarbonyl ruthenium(II) complexes of tripodal triphos $\{MeC(CH_2PPh_2)_3\}$: Synthesis, characterization and catalytic applications in transfer hydrogenation of carbonyl compounds

Bhaskar Jyoti Sarmah, Dipak Kumar Dutta*

Materials Science Division, North-East Institute of Science and Technology (CSIR), Jorhat 785006, Assam, India

ARTICLE INFO

Article history: Received 26 October 2009 Received in revised form 29 December 2009 Accepted 7 January 2010 Available online 14 January 2010

Keywords: Ruthenium carbonyl complexes Tridentate ligands Triphos complexes Crystal structure Transfer hydrogenation

ABSTRACT

The complex $[Ru(CO)_2(triphos-\kappa^2P)Cl_2]$ (1) underwent decarbonylation in dichloromethane solution under air over a period of about two weeks to afford the chelated monocarbonyl complex [Ru(CO)(tri $phos-\kappa^3P)Cl_2]$ (2). The Single Crystal X-ray structure of 2 showed a slightly distorted metal centred complex. The catalytic activity of one of the complexes $[Ru(CO)(triphos-\kappa^3P)Cl_2]$ (2) was examined in the transfer hydrogenation of aromatic carbonyl compounds and was found to be efficient with conversion up to 100% in the presence of isopropanol/NaOH.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Tridentate tripodal phosphines are recognized as one of the most important classes of ligands having widespread applications in coordination chemistry [1-10]. Such ligands provide an important advantage over monodentate phosphines with respect to greater control of the coordination number, stoichiometry and stereochemistry of their complexes [11]. Moreover, polyphosphine complexes usually have two or more chelate rings which minimize the unwanted isomers, and therefore, expected to show better catalytic activities. Among these ligands, the C3-symmetric 1,1,1tris(diphenylphosphinomethyl)ethane(triphos){MeC(CH₂PPh₂)₃} and its derivatives are the most extensively investigated ones forming a large verity of transition metal complexes which are found to have applications in catalysis [12-22]. Bianchini and coworkers in particular, pioneering the use of this ligand in transition metal catalysis using platinum group metals for a number of processes including hydrogenation, hydroformylation, oxidation, etc. [23-30]. One preliminary report for synthesis of complexes such as [Ru(CO)₂{MeC(CH₂PPh₂)₃}Cl₂] was found in literature [31]. As a part of our continuing research activities [19,32–39], we report here the synthesis, detailed spectroscopic characterization of ruthenium(II) carbonyl complexes of the type [Ru(CO)₂(triphos- $\kappa^2 P$)Cl₂](**1**) and [Ru(CO)(triphos- $\kappa^3 P$)Cl₂] (**2**). The molecular structure of **2** established by Single Crystal X-ray diffraction as well as its catalytic transfer hydrogenation activities are also reported.

2. Results and discussion

The polymeric complex $[Ru(CO)_2Cl_2]_n$ reacts with equimolar quantity of the triphos ligand by cleavage of the chloro bridge to afford **1** in good yield as a yellow crystalline solid (Scheme 1). The molecular composition of the complex is well supported by elemental analyses data. The probable molecular structure of 1 (Fig. 1) was assigned by elemental analyses, IR, NMR and mass spectrometry, where the tripodal triphos ligand attached in a bidentate manner. The bidentate coordination mode of the tripodal triphos ligand in 1 is confirmed by both the IR and ³¹P NMR spectral data. The IR spectra of **1** show two equally intense v(CO) bands at 2054 and 1988 cm⁻¹ attributing the two terminal carbonyl groups *cis* to one another. The ¹H NMR spectra of **1** show characteristics reresonance at δ = 2.58–2.67 ppm (–CH₂–) and δ = 0.98 ppm (-CH₃-), respectively, along with their phenylic protons in the range 6.61–8.05 ppm. The ³¹P NMR spectra for **1** at room temperature exhibit resonances at $\delta = 34.07$ ppm for the coordinated phosphorus atoms and $\delta = -23.51$ ppm due to the free dangling phosphorus atom. The free ligand, {MeC(CH₂PPh₂)₃}, has a single resonance at $\delta = -20.32$ ppm in CDCl₃ at 25 °C is close to the free phosphorus in **1**. Both ¹H and ³¹P NMR spectra are in accordance with stereochemical rigidity of 1 in CDCl₃ solution at 25 °C. However, attempts to develop suitable single crystal of 1 for

^{*} Corresponding author. Tel.: +91 376 2370 081; fax: +91 376 2370 011. *E-mail address:* dipakkrdutta@yahoo.com (D.K. Dutta).

⁰⁰²²⁻³²⁸X/\$ - see front matter \odot 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2010.01.011

Scheme 1. Synthesis of $[Ru(CO)_2(triphos-\kappa^2 P)Cl_2]$ (1).

Fig. 1. Probable structure of $[Ru(CO)_2(triphos-\kappa^2 P)Cl_2]$ (1).

X-ray analysis from dichloromethane solution under air led to the formation of κ^3 -P coordinated complex [Ru(CO)(triphos- κ^3 P)Cl₂] (**2**) over a period of about two weeks in relatively good yield (Scheme 2). The resulting monocarbonyl complex exhibits single terminal ν (CO) band at 1959 cm⁻¹. Such decarbonylation reaction was also observed in ruthenium complexes of the type [Ru(-CO)₂(Ph₂PCH₂P(S)Ph₂)₂Cl₂] [36]. The dangling P atom in **1** underwent chelation which is substantiated by a single ³¹P NMR resonance data. In order to obtain an unambiguous characterization of **2**, an X-ray diffraction study was undertaken. The arrangement of the atoms in the crystal is shown in Fig. 2. Ru(II) is situated in the centre of a slightly distorted octahedral coordination environment. Crystal data and structure refinement as well as some selected bond lengths (Å) and bond angles (°) for the complex **2** are

Scheme 2. Decarbonylation reaction of 1.

Download English Version:

https://daneshyari.com/en/article/1324235

Download Persian Version:

https://daneshyari.com/article/1324235

Daneshyari.com