Journal of Organometallic Chemistry 751 (2014) 471-474

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Indium hydride catalyzed chemo- and diastereoselective reductive aldol reactions

Research Center for Environmental Preservation, Osaka University, 2-4 Yamadaoka, Suita, Osaka 565-0871, Japan

ARTICLE INFO

Article history: Received 31 May 2013 Received in revised form 30 July 2013 Accepted 31 July 2013

Keywords: Reductive aldol reaction Enones Ketones Silanes Indium hydride

ABSTRACT

The reductive aldol reaction of enones has been established catalyzed by Br₂InOMe (cat.)–MePhSiH₂ system where Br₂InH acted as an active catalytic species. Addition of 1.0 equivalent of MeOH was essential for catalytic turnover. The system, Br₂InOMe(cat.)–MePhSiH₂–MeOH, provided highly chemoand diastereoselective reductive aldol reaction of enones with functionalized substrates such as α -bromo carbonyls, α -keto esters and α -alkoxy ketones.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The reductive aldol reaction of enones with aldehydes promoted by metal hydrides is a valuable method for obtaining β -hydroxyketones in one-pot synthesis [1]. To date, metal-catalyzed reductive aldol reaction of enones has been investigated [2]. We have previously reported that dibromoindium hydride (Br₂InH) as stoichiometric metal hydride promoted reductive aldol reaction of enones with aldehydes [3]. Moreover, catalytic generation of indium hydride species was successful by InBr₃(cat.)-Et₃SiH [4a] and In(OAc)₃(cat.)–PhSiH₃ systems [4b]. Although InBr₃(cat.)–Et₃SiH underwent highly diastereoselective reactions [4a], functionalized substrates were not applicable because of accompanying an acidic by-product Et₃SiBr in the transmetallation. We have developed a mild method for generating Br₂InH by using Br₂InOMe instead of InBr₃ and applied to radical cyclization of functionalized substrates [5]. We report here the catalytic reductive aldol reaction of enones by Br₂InOMe(cat.)-hydrosilane system, and accomplished high chemo- and diastereoselectivities (Scheme 1).

2. Results and discussion

To optimization of conditions for the indium-catalyzed reductive aldol reaction, initially, we performed the simple example of 1phenyl-2-buten-1-one (**1**) with cyclohexanone (**2a**) in the presence of a catalytic amount of Br₂InOMe and stoichiometric MePhSiH₂ (Table 1). Without additives, no aldol product **3a** was obtained at rt for 3 h (entry 1). When MeOH was used as an additive, product **3a** was obtained (entry 2). However, undesirable side product, 1phenyl-butan-1-one, was formed by conjugate reduction of 1 in 84% yield. The reaction at lower temperature provided a maximum yield of **3a** (52%) (entry 3). Yields were not satisfactory when H₂O or ¹PrOH was used in place of MeOH (entries 4 and 5). The use of Ph₂SiH₂ as a hydride source slightly decreased the yield of **3a** (entry 6). PhSiH₃ and Et₃SiH were not effective as stoichiometric reductants (entries 7 and 8).

A plausible catalytic cycle is shown in Scheme 2. Initially, Br_2InH is formed by the transmetallation of Br_2InOMe with MePhSiH₂. Br₂InH undergoes conjugate reduction to enone **1** to give indium enolate **A** [6]. In this step, Br_2InH could reduce ketone **2a**. The conditions at 0 °C allows the predominant reduction of enone **1**. Next, generated indium enolate **A** reacts with ketone **2a** to form indium aldolate **B**. In the final step, aldolate **B** is protonated by MeOH, and aldol product **3a** is obtained with regeneration of $Br_2I-nOMe$. We assume that this is the rate determining step. The choice of additive is important. Thus MeO group has effects on both steps of trapping of indium aldolate **B** and of generation of Br_2InH . Using ¹PrOH instead of MeOH does not promote protonation of indium aldolate and generation of Br_2InH due to less acidity and generation of sterically hindered indium alkoxide compared with MeOH.

We next tried to use functionalized substrates. In the reaction with α -bromo alkylaldehyde **2b**, desired product **3b** was obtained

or Organo metallic Chemistry

^{*} Corresponding author. Tel.: +81 6 6879 8975; fax: +81 6 6879 8978. *E-mail address:* shibata@epc.osaka-u.ac.jp (I. Shibata).

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jorganchem.2013.07.083

Scheme 1. Reductive aldol reaction of enones.

in 40% yield (Scheme 3). Noteworthy is high diastereoselectivity of the reaction *via* Zimmerman–Traxler six-membered transition state **C** [7]. Previously reported system, InBr₃(cat.)–Et₃SiH, resulted in low yield. Thus in the generation of Br₂InH, InBr₃(cat.)–Et₃SiH system [4a] accompanied acidic Et₃SiBr which would decompose functionalized compounds, **2b** and **3b**. In contrast, starting from Br₂InOMe–MePhSiH₂ accompanied silyl methoxide as a mild and neutral by-product.

The reactions using other functionalized ketones are summarized in Table 2. The highly chemoselective reaction was also applicable to α -bromo acetophenone (**2c**) (entry 2). The presented reductive aldol reaction has limited application for simple ketone such as acetophenone. However, dehalogenation of product **3c** afforded adduct **4** which corresponds to the product using acetophenone (Scheme 4).

Functionalized ketones such as α -keto esters, **2d** and **2e**, were also reactive to give products, **3d** and **3e**, respectively (entries 2 and 3). No by-products derived from the reduction of **2d** and **2e** were obtained. Noteworthy is high diastereoselectivities of these reactions which could be rationalized by bicyclic transition state **D** as shown in Scheme 5.

The use of α -methoxy acetophenone **2f** also underwent highly diastereoselective reaction where OMe group acts as coordinating group to indium (entry 4). The reaction with benzoin methyl ether (**2g**) gave diastereoselective product **3g** with three contiguous stereogenic centers (entry 5). In this reaction, among possible chelated cyclic transition states, an excellent stereocontrol was achieved through **E** as sterically least hindered cyclic transition state (Scheme 6).

3. Conclusions

We have established that MePhSiH₂ and MeOH promoted reductive aldol reaction of enones in the presence of a catalytic amount of dibromoindium methoxide (Br₂InOMe). Br₂InH acted as an active catalytic species. The reactions were performed only using main group metals and any expensive transition metals were not

Table 1

Optimization of reductive aldol reaction of enone 1 with 2a.^a

Entry	Silane	Conditions	Additive	3a Yield% ^b
1	MePhSiH ₂	rt, 3 h	None	Trace (5)
2	MePhSiH ₂	rt, 3 h	MeOH	12 (84)
3	MePhSiH ₂	0 °C, 24 h	MeOH	52 (37)
4	MePhSiH ₂	0 °C, 24 h	H ₂ O	Trace (15)
5	MePhSiH ₂	0 °C, 24 h	¹ PrOH	Trace (14)
6	Ph ₂ SiH ₂	0 °C, 24 h	MeOH	37 (26)
7	PhSiH ₃	0 °C, 24 h	MeOH	10 (72)
8	Et₃SiH	0 °C, 24 h	MeOH	Trace (trace)

^a Conditions: Br₂InOMe (0.1 mmol), silane (1.1 mmol), additive (1.0 mmol), **1** (1 mmol), **2a** (1 mmol), MeCN (1 mL).

^b Yields of 1-phenyl-butan-1-one in parentheses.

Scheme 2. Plausible catalytic cycle.

required. Highly chemo- and diastereoselective aldol products were obtained in the case using α -halo ketones, α -keto esters and α -alkoxy ketones. We are now enlarging the scope of substrates.

4. Experimental

4.1. General experimental methods

To a dry nitrogen-filled 10-mL round-bottomed flask containing InBr₃ (0.1 mmol) in MeCN (1 mL) was added NaOMe (0.12 mmol) at rt. The mixture was stirred at room temperature for 30 min. To the solution were added MePhSiH₂ (1.1 mmol), enones **1** (1 mmol), carbonyl **2** (1 mmol) and MeOH (1 mmol) and the resulting mixture was stirred at 0 °C for 24 h. After quenching with saturated NaCl (aq) (2 mL), the reaction mixture was dried over MgSO₄ and concentrated. The residue was subjected to column chromatography eluting with hexane/EtOAc. Indium and silane residue were removed by this treatment. The crude product was then purified by flash column chromatography eluted by hexane/EtOAC with gradation mode changing from 9/1 to 3/7. The desired product was obtained at hexane/EtOAC = 7:3.

4.1.1. 2-(1'-Hydroxy-cyclohexyl)-1-phenyl-butan-1-one (3a)

The NMR data well agree with the reported data in Ref. [2i].

Colorless liquid. IR (neat) 3493 cm⁻¹ (OH), 1659 cm⁻¹ (C=O). MS (EI, 70 eV) *m*/*z* 246 (M⁺, 5), 105 (PhCO, 100), 77 (Ph, 28). HRMS calcd for C₁₆H₂₂O₂: 246.1620, found: *m*/*z* 246.1614 (EI, M⁺, -0.6 mmu). ¹H NMR (CDCl₃, 400 MHz) δ 8.00–7.98 (m, 2H, Ph(*o*)), 7.62–7.57 (m, 1H, Ph(*p*)), 7.51–7.47 (m, 2H, Ph(*m*)), 3.51 (dd, *J* = 4.3 and 9.9 Hz, 1H, C=OCH), 3.47 (s, 1H, OH), 1.93–1.18 (m, 12H, CH₂Me, cyclohexyl CH₂), 0.83 (t, *J* = 7.48 Hz, 3H, CH₃). ¹³C NMR (CDCl₃, 100 MHz) δ 208.6, 138.9, 133.4, 128.7, 128.2, 73.0, 54.7, 37.7, 35.2, 25.7, 21.8, 21.7, 20.9, 12.7.

4.1.2. 4-Bromo-2-ethyl-3-hydroxy-1, 5-diphenyl-pentan-1-one (**3b**)

Pale yellow liquid. IR (neat) 3444 cm⁻¹ (OH), 1651 cm⁻¹ (C=O). MS (CI, 200 eV) m/z 362 (M⁺ + 1, 20.38). HRMS calcd for

Scheme 3. The reaction of **1** with α -bromo alkylaldehyde (**2b**).

Download English Version:

https://daneshyari.com/en/article/1324302

Download Persian Version:

https://daneshyari.com/article/1324302

Daneshyari.com