

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Synthesis, characterization, crystal structures and computational studies on novel cyrhetrenyl hydrazones

Johana Gómez ^a, Nelson Leiva ^a, Rodrigo Arancibia ^a, Juan Oyarzo ^a, Gonzalo E. Buono-Core ^a, A. Hugo Klahn ^{a, *, 1}, Vania Artigas ^a, Mauricio Fuentealba ^a, Ramon Bosque ^b, Gabriel Aullón ^b, Concepción López ^{b, **, 1}, Mercè Font-Bardía ^c, Teresa Calvet ^d

^a Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile

^b Departament de Química Inorgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain

^c Unitat de Difracció de Raigs-X, Centres Científics i Tecnològics (CCiT), Universitat de Barcelona, Solé i Sabaris 1-3, E-08028 Barcelona, Spain

^d Departament de Cristal·lografia, Mineralogia i Dipòsits Minerals, Facultat de Geología, Universitat de Barcelona, Martí i Franquès s/n, E-08028 Barcelona,

Spain

A R T I C L E I N F O

Article history: Received 8 April 2016 Received in revised form 17 June 2016 Accepted 18 June 2016 Available online 25 June 2016

Keywords: Cyrhetrenyl hydrazones Ferrocenyl hydrazones

Crystal structure NMR Computational studies

ABSTRACT

The synthesis of novel cyrhetrenyl hydrazones of general formula $[Re{(\eta^5-C_5H_4)-C(R^1) = NNHR^2\}(CO)_3]$ {with $R^1 = H$ and $R^2 = 4-NO_2-C_6H_4$ (**4a**), C_6H_5 (**4b**) or H (**4c**) or $R^1 = Me$ and $R^2 = 4-NO_2-C_6H_4$ (**5a**), C_6H_5 (**5b**) or H (**5c**)} is described. Compounds **4a**–**4c** and **5a**–**5c** were characterized by mass spectrometry and IR spectroscopy. ¹H and ¹³C{¹H} NMR studies revealed that **4a**–**4c** and **5a**–**5c** adopt the anti-(*E*) configuration in solution. X-ray crystal structures of compounds **4a** and **5c** confirmed the *trans*-arrangement of the cyrhetrenyl "Re(η^5 - C_5H_4)(CO)₃" and the -NHR² moieties and the existence of strong hydrogen bonds involving the -NH- unit. Molecular Orbital calculations at a DFT level have also been carried out in order to rationalize the influence of the nature of the substituent R³ of [R³CH = NNH(4-NO_2-C_6H_4)] (R³ = ferrocenyl, (**3a**), cyrhetrenyl (**4a**), phenyl (**6a**) or cymantrenyl (**7a**) on the electronic delocalization, the nucleophilicity of the imine carbon, the polarizability and hyperpolarizability of these compounds, and computational studies using time-dependent density functional (TD-DFT) calculations have also been carried out in order to assign the bands detected in their electronic spectra and to explain the effect produced by the solvent.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Sandwiches and three legged half-sandwich organometallic compounds have been studied since long ago, but nowadays constitute a very attractive area of research [1–4]. Compounds of this kind with additional $-C(R^1) = N - \text{ or } -C(R^1) = NNHR^2$ groups attached to the rings are specially relevant for different reasons. These include their utility as precursors in organic, inorganic and organometallic synthesis (especially as metallo-ligands to achieve polymetallic derivatives), their interesting (chemical,

photochemical, electrochemical) properties as well as their applications in a variety of fields [1–4]. For instance, ferrocenylimines [5,6], oximes [7], azines and azoderivatives [8], thiosemicarbazones [9] or, to a lesser extent, monohydrazones [Fe(η^5 -C₅H₅){(η^5 -C₅H₄) –C(R¹) = N–NHR²] (R¹ = H (1) or Me (2), Fig. 1) or the 1,1'-dihydrazones (3) [10,11], are valuable as ligands in coordination and organometallic chemistry (i.e. to achieve cyclometallated compounds) [5,10]. Furthermore, mono- and disubstituted ferrocenyl hydrazones (1–3 in Fig. 1) with large non-linear optical (NLO) properties have also been reported [12].

On the other hand, the chemistry of cyrhetrene, $[\text{Re}(\eta^5-C_5H_5)(\text{CO})_3]$ (the typical example of a three legged half-sandwich rhenium complex), has undergone a rapid development in the last decade [13–15]. Functionalization of the ring or exchange of the CO groups by other mono or bidentate ligands have allowed to prepare a variety of new cyrhetrene derivatives. Most of them

^{*} Corresponding author.

^{**} Corresponding author.

E-mail addresses: hugo.klahn@pucv.cl (A.H. Klahn), conchi.lopez@qi.ub.es (C. López).

¹ Equal contribution.

Fig. 1. Representative examples of ferrocenyl and cyrhetrenyl hydrazones described previously [10,11,17].

exhibit interesting properties, reactivity, (i.e. as metallo-ligands) and biological or catalytic activity [13–15]. Cyrhetrenylimines [6,14], amines [14a] and thiosemicarbazones [9a] have been described in the late years and their properties, applications and activities have been compared with those of their corresponding ferrocenyl analogues [6–9].

Despite the spectacular progress on the design and development of: a) organometallic compounds containing redox active centres [1-4,5a,5b] and b) new hydrazones as stimuli responsive molecules [16], cyrhetrenyl derivatives of the type [Re{($\eta^{5}-C_{5}H_{4}$) C(R¹) = NNHR²}(CO)₃] are extremely scarce; as far as we know, that shown in Fig. 1, is the sole example [17]. Moreover, unsubstituted [Re{($\eta^{5}-C_{5}H_{4}$)-C(R¹) = NNH₂}(CO)₃] compounds still remain unknown. In view of this and our interest to compare electronic effects of cyrhetrenyl and ferrocenyl moiety [5-7a,9a,10-11,14,15], here we present six new cyrhetrene derivatives of general formula [Re{($\eta^{5}-C_{5}H_{4}$)-C(R¹) = NNHR²}(CO)₃] with R¹ = H (**4**) or Me (**5**) and R² = 4-NO₂-C₆H₄ (**a**), C₆H₅ (**b**) or H(**c**). It should be noted that those with phenyl rings (**4a**-**4b** and **5a**-**5b**) could be visualized as derived from compounds **1** and **2**, respectively (Fig. 1) by replacement of the "Fe($\eta^{5}-C_{5}H_{5}$)" unit by the "Re(CO)₃" moiety.

2. Results and discussion

2.1. Synthesis and solution studies

The new cyrhetrenyl hydrazones $[\text{Re}\{(\eta^5-C_5H_4) - C(\text{R}^1) = \text{N}-\text{NHR}^2\}(\text{CO})_3]$ **(4a, 4b, 5a** and **5b**) were prepared by adaptation of the procedures reported for their ferrocenyl analogues (**1** or **2** in Fig. 1) [12a]; while compounds **4c** and **5c** (with $\text{R}^2 = \text{H}$) were obtained following the method described for 1,1'-diacetylferrocene dihydrazone [10c]. In all cases, the processes are based on condensation reactions between formyl- (for **4a**-**4c**) or acetyl- (for **5a**-**5c**) cyrhetrene and the corresponding hydrazine in anhydrous methanol (Scheme 1). The new compounds, that were

isolated as yellow (**4a**–**4c**, **5a** and **5c**) or red (**5b**) crystalline solids after crystallization from CH_2Cl_2 /hexane mixtures, exhibit high solubility in CH_2Cl_2 and $CHCl_3$, and they are practically insoluble in hexane. It should be noted that **4c** is less stable (in solution as well as in the solid state) than **4a**, **4b** and **5a**–**5c** and it was characterized immediately after its isolation.

Compounds **4a–4c** and **5a–5c** were characterized by electron impact (EI) mass spectrometry, infrared spectroscopy and NMR studies. Their MS spectra showed peaks due to the molecular cations [M]⁺ and those arising from the successive dissociation of the remaining CO ligands. IR spectra of **4a–4c** and **5a–5c** in CH₂Cl₂ showed the following common features: a) two intense bands at 2023 and 1929 cm⁻¹, that are characteristic of the asymmetric (v_{as}) and symmetric (v_s) stretchings of the terminal CO ligands of cyrhetrene derivatives [9a,14,15], and b) an intense and sharp absorption (at around 1600 cm⁻¹) in the same range as observed for ferrocenyl hydrazones [Fe(η^5 -C₅H₅){(η^5 -C₅H₄)–C(R¹) = N–NHR²] with R¹ = H (**1**) or Me (**2**) [10–12], that has been assigned to the stretching of the functional > C=N–.

It is well-known that hydrazones may adopt two different forms (*E*- or *Z*-) [6,18] in the solid state and also in solution. ¹H and ¹³C{¹H} NMR spectra of **4a**–**4c** and **5a**–**5c** showed only one set of resonances, thus suggesting that only one of the two isomers was present in CDCl₃ solution at room temperature (we will return to this point later on).

Proton-NMR spectra of **4a**–**4c** and **5a**–**5c** showed two triplets of identical intensities assigned to the pairs of protons (H^2 , H^5) and (H^3 , H^4) of the "Re(η^5 -C₅H₄)" moiety and an additional singlet, in the range 7.3 < δ < 8.0 ppm for **4a**–**4c**, or at around 1.9 ppm (for **5a**–**5c**), due to the ¹H nuclei of the R¹ units (H and Me, respectively). The resonance of the –NH– proton appeared as a broad singlet for **4c** and **5c** (at 5.26 and 5.48 ppm); while for **4a**, **4b**, **5a** and **5b** this signal was much narrower and low-field shifted. Additional resonances due to the aromatic protons of the phenyl rings of **4a**–**b** and **5a**–**b** were also observed.

Scheme 1. Synthesis of compounds $[Re{(\eta^5-C_5H_4)-C(R^1) = N-NHR^2](CO)_3]$ with $R^1 = H$ (4) or Me (5) and atom numbering system for NMR data.

Download English Version:

https://daneshyari.com/en/article/1324459

Download Persian Version:

https://daneshyari.com/article/1324459

Daneshyari.com