Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Synthesis and reactivity of homo-bimetallic Rh and Ir complexes containing a N,O-donor Schiff base

Ashish Kumar Singh^a, Sudhakar Dhar Dwivedi^a, Santosh Kumar Dubey^a, Sanjay Kumar Singh^a, Sanjeev Sharma^a, Daya Shankar Pandey^{a,*}, Ru-Qiang Zou^b, Qiang Xu^{b,*}

^a Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, UP, India
^b National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan

ARTICLE INFO

Article history: Received 6 August 2008 Received in revised form 19 May 2009 Accepted 21 May 2009 Available online 27 May 2009

Keywords: Homo-bimetallic Rhodium Iridium Pentamethylcyclopentadienyl Schiff base Weak interactions

ABSTRACT

Binuclear complexes [{($\eta^{5}-C_{5}Me_{5}$)RhCl}₂(μ -bsh)] (1) and [{($\eta^{5}-C_{5}Me_{5}$)IrCl}₂(μ -bsh)] (2) containing *N*, *N'*-bis(salicylidine)hydrazine (H₂bsh) are reported. The complexes 1 and 2 reacted with EPh₃ (E = P, As) to afford cationic complexes [($\eta^{5}-C_{5}Me_{5}$)Rh(PPh₃)(κ^{2} -Hbsh)]PF₆ (3), [($\eta^{5}-C_{5}Me_{5}$)Rh(AsPh₃)(κ^{2} -Hbsh)]PF₆ (4), [($\eta^{5}-C_{5}Me_{5}$)Ir(PPh₃)(κ^{2} -Hbsh)]PF₆ (5), and [($\eta^{5}-C_{5}Me_{5}$)Ir(AsPh₃)(κ^{2} -Hbsh)]PF₆ (6) which were isolated as their hexafluorophosphate salts. Representative complexes 3 and 5 have been used as a metal-lo-ligand in the synthesis of binuclear complexes [($\eta^{5}-C_{5}Me_{5}$)RhCl(μ -bsh)Ru($\eta^{6}-C_{10}H_{14}$)Cl]PF₆ (8). The complexes under study have been fully characterized by analytical and spectral (FAB/ESI-MS, IR, NMR, electronic and emission) studies. Molecular structures of 1, 2, 3 and 5 have been determined crystallographically. Structural studies on 1 and 2 revealed the presence of extensive inter- and intra-molecular C-H··· π weak bonding interactions. The complexes 1, 2, 3 and 5 moderately emit upon excitation at their respective MLCT bands.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The chloro-bridged dimeric complexes $[{(\eta^5-C_5Me_5)M}]$ $(u-Cl)Cl_{2}$ (M = Rh or Ir) have attracted attention of many research groups as these are indispensable organometallic precursors [1,2]. These undergo chloro-bridge cleavage reactions leading to the formation of a series of interesting neutral and cationic mononuclear half sandwich complexes of the type $(C_5Me_5)ML_nX$ [3]. The half sandwich complexes based on Rh and Ir have proved to be very important because of their involvement in a number of stoichiometric and catalytic reactions including activation of carbon-hydrogen bonds and alkene oligomerisation and polymerisation [4-9]. Reactions of the chloro-bridged rhodium and iridium complexes $[\{(\eta^5-C_5Me_5)MCl(\mu-Cl)\}_2]$ [M = Rh, Ir] have been studied extensively with a variety of Lewis bases, N,N' and N,O-donor Schiff bases and N-heterocyclic ligands [10-17]. Despite extensive studies on reactivity of the complexes $[{(\eta^5-C_5Me_5)MCl(\mu-Cl)}_2]$ [M = Rh, Ir] with a variety of ligands, their reactions with N₂O₂ donor Schiff base ligands like, N,N-bis(salicylidine)hydrazine (H₂bsh), *N*,*N*'-bis(salicylidine)-*p*-phenylenediamine (H₂bsp) and *N*,*N*'-bis(salicylidine)-*p*-biphenylenediamine (H₂bsb) have seldom been investigated [18].

N,*N*'-bis(salicylidine)hydrazine (H₂bsh) derived from the reaction of salicylaldehyde with hydrazine possesses four donor sites in the form of phenalato oxygen and imine nitrogen and can act as a mono-, bi-, tri- or tetradentate ligand. Generally, it interacts with metal ions as a tetradentate ligand through both the bis-chelating N,O-donor sites in κ^2 : κ^2 -mode after dissociation of the phenolic protons. In some cases, H₂bsh interacts with metal ions through only one of the bis-chelating donor sites in a κ^2 -mode and acts as a bidentate ligand (Scheme 1) [19,20]. It also interacts with the metal ions in an unusual κ^2 : κ^1 -coordination mode and acts as a tridentate ligand. Recently we have reported arene ruthenium(II) complexes in which two ruthenium centres are bridged by two bsh²⁻ groups in an unusual κ^2 : κ^1 -mode [18].

Because of our interests in this area we devoted our efforts towards reactivity of the chloro-bridged dimeric rhodium and iridium complexes [{(η^5 -C₅Me₅)MCl(μ -Cl}₂] [M = Rh, Ir] with H₂bsh. In this paper, we report reproducible syntheses, spectral properties and reactivity of the homo-nuclear bimetallic complexes [{(η^5 -C₅Me₅)MCl}₂(κ^2 -bsh)] (M = Rh **1**, Ir **2**) with EPh₃ and crystal structures of [{(η^5 -C₅Me₅)RhCl}₂(μ -bsh)] **1**, [{(η^5 -C₅Me₅)IrCl}₂(μ -bsh)] **2**, [(η^5 -C₅Me₅)Rh(PPh₃)(κ^2 -Hbsh)]PF₆ **3** and [(η^5 -C₅Me₅)Ir(PPh₃) (κ^2 -Hbsh)]PF₆ **5**. Also we describe herein the results of our preliminary studies on application of representative complexes **3** and **5** as metallo-ligand in the synthesis of hetero-bimetallic complexes **7** and **8**.

^{*} Corresponding authors. Tel.: +91 542 2307321x105 (D.S. Pandey). *E-mail address:* dspbhu@bhu.ac.in (D.S. Pandey).

⁰⁰²²⁻³²⁸X/\$ - see front matter \odot 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2009.05.026

2. Results and discussion

Reactions of the chloro-bridged dimeric complexes [$\{(\eta^5 C_5Me_5)MCl(\mu-Cl_{2})$ (M = Rh, Ir) with potassium derivative of H₂bsh (obtained from the reaction of H₂bsh with KOH in MeOH) under stirring conditions at room temperature afforded neutral binuclear complexes 1 and 2, respectively (Scheme 2). Synthesis and spectral characterization of the complex 1 have already been reported by us [18]. Attempts were made to prepare hetero-bimetallic complexes containing both the Ru and Rh centres from the reactions of $[{(\eta^6-\text{arene})RuCl(\mu-Cl)}_2]$ (arene = *p*-cymene or benzene) and $[\{(\eta^5-C_5Me_5)RhCl(\mu-Cl\}_2\}$ with potassium derivative of H₂bsh in methanol under analogous conditions. Surprisingly such a reaction yielded complex 1 as the major product with some unidentified side products. The formation of **1** as major product over the homo-bimetallic ruthenium complex [{(η^6 -arene)- $Ru_{2}(\kappa^{2}-bsh)$] or hetero-bimetallic complex containing both the Ru and Rh [{(η^6 -arene)Ru}(κ^2 -bsh){(η^5 -C₅Me₅)RhCl}] may be attributed to higher stability of the homo-bimetallic rhodium complex 1.

Complexes **1** and **2** upon treatment with EPh₃ (E = P, As) in methanol in presence of NH₄PF₆ under refluxing conditions afforded monometallic complexes **3–6** in reasonably good yields (Scheme 3). Further, reactions of one equivalent of **1** or **2** with two equivalents of EPh₃ could not give bsh²⁻ bridged bimetallic complexes [{($\eta^{5}-C_{5}Me_{5}$)M(EPh₃)}₂(μ -bsh)](PF₆)₂. Rather, it led in the cleavage of bsh²⁻ bridged binuclear complexes to afford cationic monometallic complexes. The formation of monometallic complexes may be attributed to the steric hindrance resulting from the presence of two bulky EPh₃ groups.

The presence of uncoordinated bis-chelating N,O-donor sites in **3–6** offers an unique opportunity for these molecules to behave as

synthon in the development of hetero-bimetallic systems. To explore the possibility of their use as synthon for the construction of homo/hetero-bimetallic complexes, **3** and **5** were treated with chloro-bridged dimeric arene ruthenium complex [{ $(\eta^6 - C_{10}H_{14})Ru(\mu-Cl)Cl$ }] in methanol. It led in the formation of binuclear complexes **7** and **8**, respectively (Scheme 4).

The complexes **1–8** gave satisfactory analyses for C, H and N. The formations of **1, 2**, **7** and **8** have also been supported by mass spectral studies. FAB mass spectra of **1** and **2** exhibited peaks at m/z749 (750) and 928 (928), respectively, corresponding to [{(η^5 -C₅Me₅)MCl}(μ -bsh)(η^5 -C₅Me₅)M}] (M = Rh; Ir) moieties, resulting from the loss of one chloro group from the molecular units. The presence of peaks at m/z 477 (476) and 565 (566), respectively in the FAB mass spectra of **1** and **2**, corresponding to the monometallic moieties [{(η^5 -C₅Me₅)MCl}(κ^2 -bsh)] (M = Rh; Ir) further supported formation of the complexes. The presence of various peaks in the ESI-MS spectra of **7** and **8** corroborated well to the formulation of these complexes (Figs. S1 and S2).

IR spectra of 1 and 2 displayed shift in the position of bands corresponding to $v_{C=N}$ and phenolic C–O by ~17 and ~67 cm⁻¹, respectively as compared to that in the uncoordinated H₂bsh $(1621 \text{ and } 1273 \text{ cm}^{-1})$ [18,19]. It suggested coordination of the ligand H₂bsh through imine nitrogen and phenolic oxygen after deprotonation. The band associated with N-N stretching vibration appeared at 1020 cm⁻¹. Coordination of H₂bsh to the metal centre in κ^2 -mode and formation of monometallic complexes were also supported by IR spectra of the respective complexes. IR spectra of the monometallic complexes exhibited two distinct bands associated with $v_{C=N}$ at ~1596 and ~1465 cm⁻¹, respectively as compared to that in the respective precursor complexes 1 and 2. The band at \sim 1596 cm⁻¹ may be attributed to the pendent C=N group, while the one at \sim 1465 cm⁻¹ to the coordinated C=N. Similarly, the bands at \sim 1190 and \sim 1150 cm⁻¹ may be assigned to the pendent and coordinated phenolic C-O groups, respectively. The presence of characteristic vibrations associated with v_{P-F} (at \sim 842 cm⁻¹) suggested cationic nature of the complexes **3–8** [21].

¹H NMR spectral data of the complex **1** has already been reported [18] and data for 2-8 is recorded in Section 3. In the ¹H NMR spectrum of **2** protons of the ligand (bsh^{2–}) resonated at δ 9.69, 7.39 (d, J = 7.8 Hz), 7.31-7.24 (m), 7.03 (d, J = 8.4 Hz) and 6.61 (t, J = 7.2 Hz) ppm. The singlet at δ 9.69 ppm has been assigned to the protons associated with [-C(H)=N-], while the resonances at δ 7.39 (d, J = 7.8 Hz), 7.31–7.24 (m), 7.03 (d, J = 8.4 Hz) and 6.61 (t, J = 7.2 Hz) ppm to aromatic protons of the ligand. The η^5 -C₅Me₅ protons resonated as a singlet at δ 1.43 ppm. The position and integrated intensity of various signals corroborated well to the proposed formulation of the complex **2**. The presence of a singlet at δ 9.69 corresponding to aldehvdic protons in ¹H NMR spectra of 1 and 2 supported proposed formulations and suggested an equivalent electronic environment about both the metal centres. Reactions of **1** and **2** with EPh_3 (E = P, As) disrupts symmetric coordination of H₂bsh with the metal centres and results in monometallic complexes 3-6. The asymmetric mode of coordination is evidenced by presence of two singlet corresponding to -C(H)=Nproton in the ¹H NMR spectra of complexes **3–6**. The metal coordiDownload English Version:

https://daneshyari.com/en/article/1324485

Download Persian Version:

https://daneshyari.com/article/1324485

Daneshyari.com