Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

First cyclotrisiloxanes with three different R_2Si -units of the general formula $R_2^1Si(OSiR_2^2)(OSiR_2^3)O$ ($R_2^1 = Me_2Si(NSiMe_3)_2$, $R^2 = Cl$, Ot-Bu, $R^3 = Me$)

Andreas Rammo*

Institute of Inorganic Chemistry, Saarland University, Campus C4 1, 66123 Saarbrücken, Germany

ARTICLE INFO

Article history: Received 26 November 2010 Received in revised form 4 January 2011 Accepted 11 January 2011

Keywords: Cyclisations Siloxanes Cyclosiloxanes Cyclotrisiloxanes Silanols X-ray crystal structures

ABSTRACT

The reaction of compound Me₂Si(NSiMe₃)₂Si(OH)Cl with Me₂SiCl₂ leads to the disiloxane Me₂Si(NSiMe₃)₂Si(OH)Cl with Me₃Si(Cl)OSi(Me₂)Cl (**1**). Hydrolysis of **1** in the presence of pyridine results in Me₂Si(NSiMe₃)₂Si(OH) OSi(Me₂)OH (**2**), which is allowed to react with SiCl₄ to give cyclotrisiloxane [Me₂Si(NSiMe₃)₂Si](OSiMe₂) (OSiCl₂)O (**3**). The treatment of **1** with (*t*-BuO)₂Si(OH)₂ forms cyclotrisiloxane [Me₂Si(NSiMe₃)₂Si] (OSiMe₃)₂Si] (OSiMe₂)[OSi(Ot-Bu)₂]O (**4**). Compound **3** is obtained as a crystalline solid while **4** is an oily liquid. The ring size of these new types of cyclotrisiloxanes with three different R₂Si-units is confirmed by cryoscopy in benzene, ²⁹Si NMR chemical shifts and in case of **3**, additionally by a single X-ray diffraction study. The different electronegativities of the substituents in the R₂Si-units lead to different bond lengths and bond angles within the Si₃O₃ cycle, which are discussed in detail in the molecular structure of **3**.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

For more than 50 years, ring-opening polymerisation of cyclic siloxanes has extensively been used in industry and chemical laboratories as the basic method for the synthesis of high molecular weight linear polysiloxanes [1,2]. In contrast to the almost strainfree eight-membered cyclosiloxanes, which provide less successful results by the kinetically controlled ring-opening polymerisation [3–6], the six-membered cyclosiloxanes can easily and successfully be polymerised. The driving force is the relief of ring strain present within cyclotrisiloxanes [7]. Cyclotrisiloxanes with similar R₂Siunits of the general formula (R₂SiO)₃ have already been known since the early 20th century [8-11] and such as $(R_2Si^1)(OSiR_2^2)_2O$ with two different R₂Si-units have been synthesised and characterised in the last decades [7,12-16]. Few Si₃O₃ cycles with different $R^{1}R^{x}$ Si-units (x = 1-3) have been mentioned in literature [17–19]. However cyclotrisiloxanes with three different R₂Si-units have so far not been reported.

* Tel.: +49 681 302 2965; fax: +49 681 302 3995. *E-mail address:* a.rammo@mx.uni-saarland.de.

2. Results

2.1. Synthesis

The formation of the cyclotrisiloxanes, **3** and **4** can be achieved in a stepwise synthesis. The starting compound, $Me_2Si(NSiMe_3)_2SiCl_2$ [20], is converted into $Me_2Si(NSiMe_3)_2Si(OH)Cl$ [15,21] by partial hydrolysis in the presence of pyridine (equation (1)).

The substitution of one chlorine atom can easily be detected by NMR spectroscopy. In Me₂Si(NSiMe₃)₂SiCl₂ ($C_{2\nu}$ -symmetry) the two methyl groups of the Me₂Si-moeity are homotopic giving only one signal in ¹H and ¹³C NMR spectra. The substitution of one chlorine atom by a hydroxyl group results in a second singlet in the NMR spectra [15,21], each representing one diastereotopic methyl group of the compound Me₂Si(NSiMe₃)₂Si(OH)Cl (C_s -symmetry) (Fig. 1).

⁰⁰²²⁻³²⁸X/ – see front matter \odot 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2011.01.016

Fig. 1. The different substituents, Cl and OH influence the terminal methyl groups to give two separate singlets in the ¹H and ¹³C NMR spectra.

The colourless solid $Me_2Si(NSiMe_3)_2Si(OH)Cl$ is a stable material. No self-condensation reactions releasing HCl or water are observed [21]. On the other hand, if the sterically less demanded dichlorodimethylsilane is allowed to react with $Me_2Si(NSiMe_3)_2Si$ (OH)Cl in the presence of the hydrochloride acceptor pyridine, the disiloxane **1** can be prepared (equation (2a)).

In order to suppress an undesirable concurrence reaction between the desired product **1** and Me₂Si(NSiMe₃)₂Si(OH)Cl, the mixture of Me₂Si(NSiMe₃)₂Si(OH)Cl/pyridine in the solvent diethyl ether is slowly added to an excess of Me₂SiCl₂ under vigorous stirring. The disiloxane **1** gives an oily colourless liquid, which can be isolated by distillation at 55 °C under reduced pressure $(10^{-2}$ Torr) yielding 68%. In the ¹H and ¹³C NMR spectra for **1** the two diastereotopic methyl groups show two singlets like in the compound Me₂Si(NSiMe₃)₂Si(OH)Cl (Fig. 1) and the integration ratio of the NMR signals in the proton resonance spectrum is fully consistent with the structure of compound **1**.

The treatment of **1** with two equivalents of water in the presence of pyridine forms the 1,3-disiloxandiol 2 (equation (2b)). In order to have a homogeneous reaction and to keep constant the necessary small amounts of water when hydrolysing 1, a dioxane solution of definite water content is used. As derived from the ¹H and ¹³C NMR spectra of the reaction solution, **2** turns out to be an unstable compound. Obviously, the silanol groups of 2 tend to interand/or intramolecular condensation reactions. The attempt to isolate 2 by removing the solvent under reduced pressure results in an oily liquid leading to a huge number of signals in the NMR spectra. For this reason, after generating 2 and filtration of the ammonium salt, the ethereal solution of **2** is immediately allowed to react with tetrachlorosilane to provide the cyclic compound 3 (equation (2c)). In order to prefer an intramolecular ring cyclisation and to reduce intermolecular reactions the dilution principle is used [22].

Compound **4** is formed by the treatment of disiloxane **1** with the equimolar amount of $(t-BuO)_2Si(OH)_2$ [23] in the presence of the hydrochloride acceptor pyridine (equation (2d)). NMR spectra reveal a very slow reaction and it is necessary to reflux the ethereal solution for 12 h to complete the generation of **4**.

The cyclotrisiloxanes, **3** and **4** can be isolated by vacuum distillation in yields of 70%, and 72%, respectively. Contrarily to compound **4**, obtained as a colourless and viscous liquid, the oily distillate of **3** crystallises out while cooling down to room temperature.

Whereas in the ¹H NMR spectra of the compounds Me₂Si(NSi-Me₃)₂Si(OH)Cl, **1** and **2**, the diastereotopic methyl groups give two separate singlets, while in the cyclic compounds **3** and **4**, respectively, the two methyl groups are isochronous and consequently only one singlet is observed with an integration of six protons. However, in the ¹³C NMR spectrum each methyl group results in the expected singlet.

2.2. Spectroscopy

²⁹Si NMR resonances show a significant shift to lower field for six-membered cyclosiloxanes compared to eight-membered cyclosiloxanes and thus allow to distinguish between ring sizes (Table 1).

The observed low-field shift for smaller ring sizes [28,29] is deduced from the increasing ring strain energy in comparison to eight- and higher-membered cycles [7]. In Table 2, additionally to the recorded ²⁹Si NMR chemical resonances for the cycles **3** and **4**,

Table 1

Comparison of ²⁹Si NMR chemical shifts for some cyclo six- and cyclo eightmembered siloxanes.

Cyclosiloxanes	<i>n</i> = 3	n = 4
(Cl ₂ SiO) _n	-58.3	-69.3 [24]
$(Me_2SiO)_n$	-9.2	-20.0 [25]
$(Ph_2SiO)_n$	-33.5	-42.7 [26]
$[(EtO)_2SiO]_n$	-88.0	-95.1 [27]

Download English Version:

https://daneshyari.com/en/article/1324539

Download Persian Version:

https://daneshyari.com/article/1324539

Daneshyari.com