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The reaction of activated ruthenocene carboxylic acid with the resin-bound peptide octreotate yields,
after cleavage and purification by preparative HPLC, the first ruthenocenoyl peptide bioconjugate 1.
Octreotate is a chemically stabilized analogue of somatostatine. It is a cyclic octapeptide with a disulfide
bond and has been previously used for molecular diagnostics due to the fact that somatostatine receptors
are over-expressed by a variety of cancer cells. Conjugate 1 was obtained in good yield and purified by
preparative HPLC to >95% purity as judged by analytical HPLC. It has been identified by HPLC, IR and mass
spectrometry (ESI and MALDI-TOF). The peptide’s NMR signals are assigned by standard 2D methods. In

addition, the "H NMR spectrum of 1 shows characteristic signals for the metallocene between 5.1

Keywords:

Bioorganometallic chemistry
Bioconjugates

Medicinal organometallic chemistry
Metallocenes

Peptides

Ruthenium compounds

bioconjugates.

and 4.3 ppm. Compound 1 thus is a new example of tumor-targeted organometallic ruthenium

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Conjugates of biomolecules with organometallic complexes are
receiving increased attention for applications in biosensors, molec-
ular diagnostics, and analytical tools. By far the most frequently
used metal complex for biosensor applications is ferrocene (dicy-
clopentadienyl iron, Cp,Fe) [1-5]. This is due to the ease of synthe-
sis of functionalized derivatives as well as its favourable electronic
properties, in particular the high stability of the +II and +III oxida-
tion states. The electronic structure of the paramagnetic (S = ¥2) +lII
oxidation state has been studied in detail by EPR spectroscopy [6-
8]. Its properties have been compared by Elschenbroich and
coworkers to their open-ring analogues and an explanation of the
differences has been offered based on electronic structure calcula-
tions [9].

Given the abundance of ferrocene bioconjugates, we note with
astonishment the almost complete lack of biological applications
of other metallocenes with the ferrocene structure. A few cobalt-
ocenium conjugates with peptide nucleic acid oligomers (PNA)
[10,11] and peptides [12-15] have been published by our group.
Ruthenocene has been mentioned in a few early papers exclu-
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sively in the context of radiolabelling with °>Ru [16-19], and
more recently labelling of estradiol by ruthenocene was proposed
by Jaouen and coworkers [20]. Gmeiner et al. have recently re-
ported ruthenocene derivatives of dopamine receptor ligands
which show an increased affinity and specificity for the D4 dopa-
mine receptor subtypes compared to their metal-free congeners
[21]. Organometallic Ru(II) arene compounds alone, on the other
hand, were investigated by several groups for their anti-prolifera-
tive properties, making them promising anti-cancer drug candi-
dates [22-26].

In this work, we report the first ruthenocene peptide bioconju-
gate, in which ruthenocene carboxylic acid is coupled to the N-ter-
minus of the cyclic octapeptide ocreotate by a peptide bond.
Octreotate is an analogue of the naturally occurring peptide soma-
tostatine. Compared to somatostatine, octreotate has a shortened
amino acid sequence, shows enhanced stability under biological
conditions, and a higher affinity to the somatostatine receptor sub-
types 2 [27,28]. Somatostatine receptors (SSTRs) are over-ex-
pressed on several tumors and have been successfully targeted
for imaging, especially with °™Tc and !''In (Octreoscan®)
[29,30]. The challenge of this work was to establish suitable condi-
tions of solid phase peptide synthesis (SPPS) that will allow the
incorporation of a ruthenocene derivative as part of the SPPS cycle,
which in the case of octreotate includes a further step for forma-
tion of the disulfide bond.
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2. Experimental section
2.1. Materials

Ruthenocene carboxylic acid was synthesized according to liter-
ature procedures [31-33]. Chemicals and solvents were used as re-
ceived from commercial suppliers. Only enantiomerically pure
amino acids were used throughout, absolute chirality is given.

2.2. Instrumentation and analytical measurements

A Liberty Microwave Peptide Synthesizer from CEM was used
for peptide synthesis. HPLC analysis and purifications were carried
out using C18 analytical (Varian Dynamax, 4.5 mm x 250 mm) and
C18 semipreparative (Varian Dynamax, 21.4 mm x 250 mm) col-
umns on a customized Varian Prostar Instrument. IR data were col-
lected on a Bruker Tensor 27 with an ATR unit. ESI-MS analyses
were performed on a Bruker Esquire 6000 instrument. The ma-
trix-assisted laser desorption/ionization time of flight mass spec-
trometry (MALDI-TOF) mass spectra were measured on a Bruker
Daltonics Autoflex. The experiments were performed in linear
mode with positive polarity using sinapinic acid as the matrix. Nu-
clear magnetic resonance spectra were recorded on a Bruker DRX
600 MHz spectrometer. 'H and '3C chemical shifts are given in
ppm and were referenced with the residual solvent resonances rel-
ative to tetramethylsilane (TMS). Lyophilization was performed on
a Alpha 1-4 LD plus lyophilizator from Christ.

2.3. Synthesis of ruthenocenoyl-octreotate conjugate 1

Fmoc-Octreotate was synthesized on an automated peptide
synthesizer by solid phase methods using a 0.25 mmol scale
Fmoc-strategy on Fmoc-Thr('Bu)-Wang resin (0.63 mmol/g, Iris
Biotech) generating the C-terminal carboxylic acid after cleavage.
The resin-bound peptide sequence was D-Phe-Cys(Acm)-Phe-D-
Trp-Lys(Boc)-Thr(tBu)-Cys(Acm)-Thr(tBu)-Wang-resin.  Stepwise
coupling reactions were performed with enantiomerically pure
Fmoc-protected amino acids (IRIS Biotech GmbH or Novabiochem),
1-hydroxybenzotriazole (HOBt), 2-(1H-benzotriazol-1-yl)-1,3,3-
tetramethyl-uroniumtetrafluoroborate (TBTU), diisopropyl-ethyla-
mine (DIPEA), (4:4:4:6 equiv., cystein coupling: 50 °C, 0W, 1205,
followed by 50 °C, 25 W for 240 s. Other amino acids were coupled
using: 75 °C, 24 W, 300 s). 2-fold N-terminal deprotection of the
Fmoc group was performed using 20% piperidine solution in DMF
(first cycle: 75 °C, 35 W, 30 s; second cycle 75°C, 50W, 1805s). A
total of 0.055 mmol of the resin-bound side-chain protected
Fmoc-Octreotate was transferred into a batch reactor, followed
by cyclization at room temperature with a 2-fold molar excess of
thallium(Ill)trifluoroacetate (TI(TFA);) in DMF for 1h [34].
After washing with DMF, ruthenocene carboxylic acid (0.22 mmol,
0.0605 g) was coupled using O-(7-Azabenzotriazol-1-yl)-N,N,N',N'-
tetramethyluronium-hexafluorophosphate (HATU) (0.22 mmol,
0.084 g), 56.4 puL DIPEA (4:4:6) in 500 pL NMP for 3 h. The com-
pleteness of ruthenocene carboxylic acid coupling was determined
by Kaiser's test [35]. The resin was washed with DMF and DCM,
shrinked with MeOH and dried under vacuum for 30 min. Finally,
cleavage of the bioconjugate from the resin was performed with
TFA/phenol/triisopropylsilane (TIS) (2 mL, 85:10:5) for 2 h at room
temperature. The resin was filtered and washed with 0.5 mL TFA.
Addition of cold diethyl ether yielded a beige precipitate, which
was washed repeatedly with diethyl ether. The product was dis-
solved in acetonitrile/water, filtered and lyophilized. The crude
yield was 75% (0.053 g), see Fig. 1. The bioconjugate was purified
by RP-HPLC using a gradient of acetonitrile/water containing 0.1%
TFA (60 min, 4 mL/min). The fractions containing the conjugate
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Fig. 1. MALDI-TOF of the crude ruthenocenoyl-octreotate 1. The inset shows the
experimentally observed isotope pattern of the [M+H]" peak.

were collected and lyophilized. The purity of the conjugate was
95% as determined by analytical HPLC (Fig. 2). IR (neat, ATR):
3293 (br, vnu), 1643 (S, vcoe1)) 1526 (m, vco(z)). MALDI-TOF MS:
m/z 1289.9 (M+H)"; ESI-MS (pos.): 1291.22 (M+3H)", Calc. for
CgoH70N10012RUS,: 1288.4; 'H NMR (DMSO-dg, 600 MHz): & 10.77
(]Hsl, Trp4): 8.88 (]HNH, Cy52)v 8.74 (1HNH, Trp4)v 8.52 (1HNH, Phe3)v
8.46 (1Hnn, cys7), 842 (1Hnm, ryss), 831 (1Hny, Thes), 7.64
(3Hy, 1yss), 7.57 (1Hnw, Thee), 7-48 (1HnH, phet), 7-46 (1Hes, 1rpa), 7.35
(ZHB, Phel)v 734 (1HL2, Trp4)v 728 (ZHS, Phe])v 718 (]HQ, Phe])v 712
(3H, 2He, phe3, 1He, phes), 7.07 (1Hn2, Trpa), 7.04 (2Hs, phes), 6.99
(]H§3, Trp4)v 6.97 (1H61, Trp4)v 5.32 (1Hot, Cys7)v 5.27 (1H0L, CysZ)v 5.14
(1Hcp), 5.06 (1Hcps), 4.94 (1Hy, phe1), 4.82 (1Hyq, hrs), 4.63 (3H,
2Hcp34, 1Hy, phes), 4.55 (1Ho, thee), 4.34 (6H, 1Hg, s, 2Hcp), 4.26
(2H, 1Hy, thes, 1Hg, Trpa)s 4.12 (1Hy1, thes), 4.03 (1Hg, 1yss), 3.97
(1Hg, tnee)s 3.15 (1Hp2, pher), 2.98 (1Hgo, Trpa), 2.92 (1Hgs, phet),
2.87 (3H, Hpa, cys2» Hp2, cys7» Hpz, phes), 2.85 (1Hg3, phes), 2,82
(2H, Hgs, cys2, Hps, cys7)y 2.75 (1Hgs, 1rpa)s 2.61 (2Hg, 1yss5), 1.75
(1Hga, 1yss)» 1.32 (3H, THps3, 1yss, 2H5, 1yss), 1.20 (3Hy2, nis), 1.06
(3Hy2, Thrs), 0.83 (2Hy, 1yss). °C NMR (DMSO-dg, 150 MHz): &
172.7 (CO, phe1), 171.8 (CO, 1rpa), 171.6 (CO, Theg), 170.8 (CO, 1yss),
170.3 (CO, ppe3), 170.0 (CO, thr6), 169.6 (CO, cys7), 168.6 (CO, cys2),
167.1 (CO, Cp), 138.0 (Cy, phe1)» 136.4 (Cy, phe3), 135.8 (Cea, Trpa)s
129.0 (Gs, phe1), 128.6 (Cs, phes)s 127.7 (Ce, phet), 127.6 (Ce, phes)s
126.9 (CBZ- Tl‘p4)’ 126.0 (CC' Phel )- 125.9 (CC- Phe3)v 123.3 (C81' Trp4)v
120.6 (CnZv Trp4)v 117.9 (C§3y Trp4)v 117.8 (Cs3y Trp4)- 111.0 (CQZv Trp4)v
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Fig. 2. HPLC trace (220 nm) of the purified ruthenocenoyl-octreotate 1.
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