

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

First metallacarborane ethene complex $[1,8-Me_2-2,2-(C_2H_4)_2-7-SMe_2-2,1,8-IrC_2B_9H_8]$ and its reaction with iodine

Mikhail M. Vinogradov, Yulia V. Nelyubina, Nikolay S. Ikonnikov, Tatyana V. Strelkova, Alexander R. Kudinov*

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119991 Moscow GSP-1, Russian Federation

ARTICLE INFO

Article history:
Received 29 October 2015
Received in revised form
15 December 2015
Accepted 17 December 2015
Available online 19 December 2015

Keywords: Metallacarboranes Iridium Ethene Iodide Rearrangement

ABSTRACT

Metallacarborane [1,8-Me2-2,2-(C_2H_4)2-7-SMe2-2,1,8-Ir $C_2B_9H_8$] (1) was obtained by an interaction of [(C_2H_4)2IrCl]₂ with Tl[9-SMe₂-7,8-Me2-7,8- $C_2B_9H_8$]. Reaction proceeds with a low temperature "1,2 \rightarrow 1,7" polyhedral rearrangement. Ethene complex 1 reacts with iodine in toluene with the formation of ionic compound 3, consisting of cationic [(1,8-Me2-7-SMe2-2,1,8-Ir $C_2B_9H_8$)2I₃]+ (3a+) and anionic [(1,8-Me₂-7-SMe-2,1,8-Ir $C_2B_9H_8$)2I₃]- (3b-) iodide species. The structures of 1 and 3 were determined by X-ray diffraction.

© 2015 Published by Elsevier B.V.

1. Introduction

Reactions of transition metal olefin complexes with halogens [1] or hydrohalogens [2] are widely applicable for the preparation of complex halides, which are useful in organometallic synthesis [3]. In the case of the late transition metal compounds with a strong metal olefin bonding this reaction requires applying of ethene complexes [4], so far as ethene ligand tends to easier decomplexation. For example, 1,5-cyclooctadiene complex CpIr(cod) reacts with iodine providing cationic iodide $[CpIr(cod)I]^+$ [5], while reaction of ethene complex $CpIr(C_2H_4)_2$ affords iodide $[CpIrI_2]_2$ with elimination of ethene molecules [6]. However, the related metallacrborane chemistry is much less studied. Although a plenty of metallacarboranes with metal-coordinated olefin ligands are known to date [7], none of the metallacarboranes with ethene ligands were synthesized yet.

Herein we describe the synthesis of the first metallacarborane ethene complex $[1,8-Me_2-2,2-(C_2H_4)_2-7-SMe_2-2,1,8-IrC_2B_9H_8]$ and its reaction with iodine.

E-mail address: arkudinov@ineos.ac.ru (A.R. Kudinov).

2. Results and discussion

The reaction of $[(C_2H_4)_2IrCl]_2$ with $TI[9-SMe_2-7,8-Me_2-7,$ C₂B₉H₈] affords bis-(ethene)iridacarborane 1 (Scheme 1). According to the $^{11}\mbox{B}\{^{1}\mbox{H}\}$ NMR data, the sample taken 2 h after the reaction start (at $-10 \div -7$ °C) contained only a small amount of complex 1 together with major uncharacterized compound which we assume was iridacarborane with unaltered carborane cage as in initial thallium salt Tl[9-SMe₂-7,8-Me₂-7,8-C₂B₉H₈]. The same reaction mixture after being kept for 2 h at RT contained only complex 1 with a small amount of carborane 9-SMe₂-7,8-Me₂-7,8-C₂B₉H₉. Thereby, reaction proceeds with low temperature "1,2 \rightarrow 1,7" rearrangement at the metallacarborane cage. That was an unexpected result in view of our previous work, where reaction of 1.5cyclooctadiene complex [(cod)IrCl]₂ with Tl[9-SMe₂-7,8-Me₂-7,8-C₂B₉H₈] at RT affords iridacarborane with no rearrangement in the carborane ligand [8]. We suspect the ability of such a low temperature process proceeding could be associated with a higher conformational mobility of ethene in comparison with 1,5cyclooctadiene ligand which should decrease transition-state barrier energy in the case of iridacarborane 1.

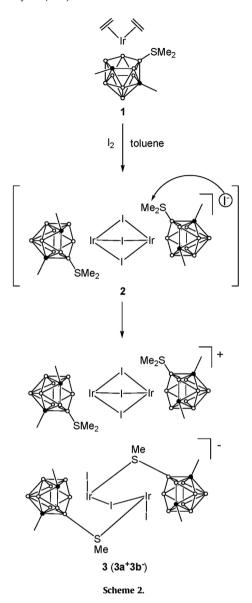
Reaction between complex **1** and 1 equiv of I₂ results in a loss of the two ethene molecules and formation of product **3**, consisting of cationic **3a**⁺ and anionic **3b**⁻ iodide species (Scheme 2). The ability of direct SMe₂ demethylation in cationic metallacarboranes by

Corresponding author.

external halide ions was shown recently [9]. We assume that complex **3** is formed as a result of nucleophilic attack by I⁻ on the one of methyl groups of SMe₂ substituents in the intermediate 2 with subsequent reorganization of organometallic frameworks. In order to verify this hypothesis, the reaction of compound 3 with NBu₄I was monitored by ESI-MS. The ESI-MS spectrum of compound **3** represents the anion **3b**⁻ (main peak m/z = 1178.0, Fig. 2) and two main cations formed by dissociation of cation $3a^+$ (Fig. 1). After 10 min reaction of 3 with NBu₄I in dichloroethane solution at RT, ESI-MS spectrum of reaction mixture still exhibits the presence of anion **3b**⁻ in the solution but in positive-ion mode the only peak corresponds to NBu $_4^+$ (m/z = 242.1) with no organometallic cations. This result clearly confirms the possibility of an interaction between **3a**⁺ and I⁻. It is worth to note, that relative tricarbollide iridium complex $[(\eta-1-Bu^tNH-1,7,9-C_3B_8H_{10})Ir(cod)]$ reacts with iodine affording dimeric iodide [(η -1-Bu^tNH-1,7,9-C₃B₈H₁₀)IrI₂]₂ [10] similar to the known [Cp*IrI₂]₂ [11].

Positions of the cage carbon atoms in iridacarborane **1** were determined by X-ray diffraction (Fig. 3). The structure of cation $\mathbf{3a}^+$ (Fig. 4) is similar to the known iodide complex $[(Cp^*Ir)_2I_3]^+$ [12], whereas anion $\mathbf{3b}^-$ (Fig. 5) is a new type compound with bridged mercapto groups formed by demethylation of the SMe₂ substituent. The Ir–I bond in anion $\mathbf{3b}^-$ in case of bridged iodine atom is shorter (av. 2.692(1) Å) than with a terminal one (av. 2.760(1) Å). In cation $\mathbf{3a}^+$ the average Ir–I distance (av. 2.755(1) Å) is slightly elongated in comparison with $[(Cp^*Ir)_2I_3]^+$ (2.726(2) Å) [12]. The Ir···Ir distance in $\mathbf{3a}^+$ (3.717(1) Å) is less than in $\mathbf{3b}^-$ (3.930(1) Å). Both $\mathbf{3a}^+$ and $\mathbf{3b}^-$ comprise two chiral iridacarborane frameworks, but $\mathbf{3a}^+$ consists of different stereoisomers whereas $\mathbf{3b}^-$ contains identical ones.

3. Conclusion


We demonstrated that the reaction of $[(C_2H_4)_2IrCl]_2$ with $TI[9-SMe_2-7,8-Me_2-7,8-C_2B_9H_8]$ proceeds with a low temperature "1,2 \rightarrow 1,7" polyhedral rearrangement giving iridacarborane [1,8-Me_2-2,2-(C_2H_4)₂-7-SMe₂-2,1,8-Ir $C_2B_9H_8$] (1). The latter reacts with iodine with elimination of the ethene molecules affording ionic compound 3, consisting of cationic [(1,8-Me₂-7-SMe₂-2,1,8-Ir $C_2B_9H_8$)₂I $_3$] $^+$ (3a $^+$) and anionic [(1,8-Me₂-7-SMe-2,1,8-Ir $C_2B_9H_8$)₂I $_3$] $^-$ (3b $^-$) iodide species. The possibility of anion 3b $^-$ formation by demethylation in cation 3a $^+$ with iodide anion was proven by ESI-MS.

3.1. Experimental

3.1.1. General

The reactions were carried out under an inert atmosphere in dry solvents. The isolation of products was conducted in air. Starting materials [(C_8H_{14}) $_2$ IrCl]₂ [13] and Tl[9-SMe₂-7,8-Me₂-7,8-C₂B₉H₈] [8] were prepared as described in the literature. 1H and $^{11}B_1^{11}H_1^{11}H_2^{11}H_3^{11}H_$

Scheme 1.

Advantage tandem dynamic mass-spectrometer (USA), equipped by octapole ion trap mass analyzer operated in positive and negative ion modes with the Surveyor MS pump and the nitrogen generator Schmidlin-Lab (Germany). Nitrogen 10/0 served as a sheath and auxiliary gas. Flow rate acetonitrile 50 μ l/min. The temperature of the heated capillary was 150°C, the electric potential between the needle and the counter electrode was 4.5 kV. The samples with the concentration of 10^{-4} mol/l in acetonitrile solution were introduced into the ion source through the Reodyne injector with the 5 μ l loop. Acetonitrile of the Merck company was used for the gradient analysis. The data collection and treatment was fulfilled using the program *X Calibur* version 1.3.

3.1.2. Synthesis of $[2-Ir(C_2H_4)_2-1,8-Me_2-7-SMe_2-1,8-C_2B_9H_8]$ (1)

Ethene was bubbled through a stirred suspension of $[(C_8H_{14})_2IrCl]_2$ (150 mg, 167 μ mol) in THF (15 ml) for 15 min. Resulting yellow solution was added to Tl[9-SMe₂-7,8-Me₂-7,8-C₂B₉H₈] (150 mg, 350 μ mol) and cooled to $-10\,^{\circ}$ C. Then the mixture was stirred with a slow temperature rise from -10 to $-7\,^{\circ}$ C during 2 h, warmed to the RT and stirred for 2 h more. The solvent was

Download English Version:

https://daneshyari.com/en/article/1324790

Download Persian Version:

https://daneshyari.com/article/1324790

<u>Daneshyari.com</u>