Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

Charge-transfer salts of methylferrocenes with DCNQI derivatives (DCNQI = N,N'-dicyano-1,4-benzoquinonediimine): Crystal structures and magnetic properties

Yusuke Funasako^a, Tomoyuki Mochida^{a,*}, Takahiro Sakurai^b, Hitoshi Ohta^c

^a Department of Chemistry, Graduate School of Science, Kobe University, Rokkodai, Nada, Hyogo 657-8501, Japan
 ^b Center for Supports to Research and Education Activities, Kobe University, Rokkodai, Nada, Hyogo 657-8501, Japan
 ^c Molecular Photoscience Research Center, Kobe University, Rokkodai, Nada, Hyogo 657-8501, Japan

ARTICLE INFO

Article history: Received 5 March 2011 Received in revised form 30 March 2011 Accepted 5 April 2011

Keywords: Crystal structures Magnetic properties Charge-transfer complex Ferrocene DCNQI

1. Introduction

Metallocene-based charge-transfer (CT) complexes have attracted special attention because of their magnetic properties [1]. In particular, decamethylferrocene ([Fe(Cp*)₂]) has afforded a variety of CT complexes that are magnetically interesting [1,2]. Among them, the most well-studied example is [Fe(Cp*)₂][TCNE] (TCNE = tetracyanoethylene), which exhibits ferromagnetic ordering below 4.8 K [3]. To date, many ferrocene-based CT complexes have been synthesized, such as those with TCNQ (tetracyanoguinodimethane), metal-ditholates, and other anions [1–4]. In our studies, ferrocene-based CT complexes have been investigated in terms of valence states and phase transitions [5]. We recently prepared neutral metallocene complexes with guinone derivatives [6,7] in search of neutral-ionic (NI) transitions in metallocene complexes. The NI transition is a transition from a high-temperature neutral state (D^0A^0) to a low-temperature ionic state (D⁺A⁻), characteristic of mixed-stack CT complexes that are located near the NI boundary [8]. We extended the NI phase diagram [7] and found that the NI boundary for ferrocene-based CT complexes is located where the difference between the redox

E-mail address: tmochida@platinum.kobe-u.ac.jp (T. Mochida).

ABSTRACT

Organometallic charge-transfer salts composed of decamethyl-, octamethyl-, and dimethylferrocene with *N*,*N*'-dicyano-1,4-benzoquinonediimine (DCNQI) derivatives were prepared. [Fe(C₅Me₅)₂] [(MeO)₂DCNQI] (1) and [Fe(C₅Me₄H)₂][Me₂DCNQI] (2) were 1:1 DA salts with mixed-stack structures, whereas [Fe(C₅Me₄H)₂][(MeO)₂DCNQI]₂ (3) and [Fe(C₅MeH₄)₂][DCNQI]₂ (4) were 1:2 DA salts. 3 exhibited a segregated-stack structure, in which charge separation was observed in the acceptor column. 1 became a metamagnet below $T_{\rm N} = 5.0$ K, whereas the other salts were paramagnets. Valence states and charge-transfer (CT) transitions in these complexes are discussed based on the neutral–ionic (NI) phase diagram.

© 2011 Elsevier B.V. All rights reserved.

potentials of the donor and acceptor ($\Delta E_{redox} = E_D - E_A$) is 0.1 V. In the present study, we used donors of $[Fe(Cp^*)_2]$ and $[Fe(C_5Me_4H)_2]$ (octamethylferrocene) and acceptors of DCNQI (N,N'-dicyano-1,4-benzoquinonediimine) derivatives to search for complexes that are close to this region.

Here, we report the syntheses, magnetic properties, and crystal structures of a series of ferrocene–DCNQI complexes: $[Fe(Cp^*)_2]$ [(MeO)₂DCNQI] (1), $[Fe(C_5Me_4H)_2][Me_2DCNQI]$ (2), $[Fe(C_5Me_4H)_2]$ [(MeO)₂DCNQI]₂ (3), and $[Fe(C_5MeH_4)_2][DCNQI]_2$ (4) (Fig. 1). These are ionic complexes with ΔE_{redox} values close to the NI boundary. Related materials include a mixed-stack complex of $[Fe(Cp^*)_2]$ [Me₂DCNQI] (1'), which is a metamagnet below $T_N = 3.9$ K [9], and a few other DCNQI-based metallocenium salts [10]. 1 showed metamagnetic behavior at low temperatures, similar to 1', whereas other salts were paramagnets.

2. Results and discussion

2.1. Syntheses and valence states

1–3 were obtained as violet single crystals by recrystallization from acetonitrile or acetone, whereas **4** was obtained as microcrystals. **1** and **2** exhibited a 1:1 DA ratio, whereas **3** and **4** exhibited 1:2 DA ratios. They were ionic complexes consisting of ferrocenium

^{*} Corresponding author. Tel./fax: +81 78 803 5679.

⁰⁰²²⁻³²⁸X/\$ – see front matter @ 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2011.04.003

Fig. 1. Chemical formulas of 1-4.

monocations. The average Fe–C(Cp) bond distances in the donors in **1–3**, determined crystallographically (*vide infra*), were 2.096 Å, 2.100 Å, and 2.096 Å, respectively, comparable to those in $[Fe(Cp^*)_2]^+$ and $[Fe(C_5Me_4H)_2]^+$ [11]. The degree of CT (ρ) on the acceptors was estimated using $\rho = A[c/(b + d)] + B$, similar to the case of TCNQ complexes [12]. In the equation, *b*, *c*, and *d* represent the bond lengths in the acceptors (Table 1 and Chart 1), and the values of A = -47.91 and B = 22.60 were tentatively determined based on the geometries of the neutral and anionic forms of Me₂DCNQI [9]. As shown in Table 1, ρ was estimated to be -1 for the acceptors in **1** and **2**, and those for two crystallographically independent acceptors (A1 and A2) in **3** were -1 and 0, respectively.

The ρ values were also estimated from the C=N stretching frequencies of the acceptors in the infrared spectra (Fig. S1), and the result was consistent with the estimation from the bond lengths. In **1** and **2**, the C=N stretching vibration, observed at around 2176 cm⁻¹ for neutral DCNQI molecules, shifted to lower energy by about 50 cm⁻¹, suggesting the value of $\rho \sim -1$. In **3**, two peaks corresponding to those of the neutral and monoanion species were observed at 2177 cm⁻¹ and 2136 cm⁻¹, respectively. In **4**, the low energy shift was about 20 cm⁻¹, suggesting the value of $\rho \sim -0.5$, which is reasonable considering the 1:2 DA ratio.

To investigate CT absorption bands, UV–Vis–NIR spectra of **1–4** and **1**' were measured. As shown in Fig. 2, all the salts exhibited broad absorption bands assignable to CT transitions at around 650–750 nm. The shapes of the CT bands for the 1:1 salts **1**, **2**, and **1**' are almost the same, accompanying a small peak around 800 nm. The band shapes for the 1:2 salts **3** and **4** differed from these. In Fig. 3, the CT energies in these salts are plotted against ΔE_{redox} (Table 2). Theoretical correlations between ΔE_{redox} and hv_{CT} for

Table 1 Selected bond lengths^a and the degree of charge-transfer (ρ) on the acceptors in **1–3** and reference compounds.

Compounds		a (Å)	b (Å)	c (Å)	d (Å)	c/(b+d)	$ ho^{\mathbf{b}}$
[Fe(Cp*) ₂][(MeO) ₂ DCNQI] (1)		1.365	1.419	1.352	1.321	0.494	-1.0
$[Fe(C_5Me_4H)_2][Me_2DCNQI](2)$		1.368	1.429	1.354	1.325	0.492	-1.0
$[Fe(C_5Me_4H)_2]$	(A1)	1.372	1.416	1.352	1.320	0.494	-1.1
$[(MeO)_2DCNQI]_2$ (3)	(A2)	1.350	1.436	1.306	1.339	0.471	0.0
Me ₂ DCNQI ^{c,d}		1.341	1.447	1.319	1.350	0.472	0.0
$[Fe(Cp^*)_2][Me_2DCNQI] (1')^{c,e}$		1.366	1.425	1.352	1.320	0.493	-1.0

^a Definition of a-d are shown in Chart 1.

^b $\rho = A[c/(b+d)] + B$ with A = -47.91 and B = 22.60.

^c Reference compounds.

^d Ref. [20]. ^e Ref. [9].

ferrocene-based 1:1 DA complexes are shown as V-shaped lines [7]. Note that ΔE_{redox} (-0.10-0.07 V) of these salts are very close to the NI phase boundary ($\Delta E_{\text{redox}} = 0.1$ V), and the plots are located near the apex of the theoretical lines. This is reasonable for **1**, **2**, and **1**' and validates our consideration of the theoretical correlation [7]. However, the 1:2 salts **3** and **4** should fall on a different $\Delta E_{\text{redox}} - hv_{\text{CT}}$ correlation [7] if they have mixed-stack structures; thus, the result implies that they are not mixed-stack complexes. Consistently, **3** exhibited a segregated-stack structure (*vide infra*), whereas the structure of **4** is unknown. The absorption spectra in **3** likely include CT transitions between the acceptors.

An ionic mixed-stack complex located near the boundary might exhibit an "ionic-to-neutral" transition at high temperatures, which should accompany paramagnetic-diamagnetic changes. However, no such transitions were found in 1-4 by SQUID measurements. No phase transitions could be detected for 1-4 and 1' by DSC (differential scanning calorimetry) measurements between 100 and 373 K. In terms of ΔE_{redox} , octamethylferrocene complex **2** was located nearer to the NI transition than decamethylferrocene complex 1', but an NI transition is less likely to occur in 2 because of its much smaller cell volume compared with $\mathbf{1}'$ (vide infra). We also tried other combinations that fall on the NI boundary using donors of octamethylformyl-, dimethyl-, and non-substituted-ferrocene and acceptors of MeO₂-, Me₂-, and non-substituted-DCNQI. However, no complexes were obtained except for 1-4; in particular, the combinations that might afford neutral complexes were difficult to form. Among the obtained salts, the combination for **3** was the closest to the NI boundary in terms of redox potential, although it did not give a 1:1 mixed-stack structure suitable for an NI transition.

2.2. Crystal structures of 1 and 2

Packing diagrams of **1** and **2** are shown in Figs. 4 and 5, respectively. Both crystals belong to the space group of P-1. The donors and acceptors are stacked alternately in both crystals, and

Psotpare (arr) (nuit)

Download English Version:

https://daneshyari.com/en/article/1325341

Download Persian Version:

https://daneshyari.com/article/1325341

Daneshyari.com