

Journal ofOrgano metallic Chemistry

Journal of Organometallic Chemistry 692 (2007) 2205-2215

www.elsevier.com/locate/jorganchem

Synthesis, crystal structures and third-order nonlinear optical properties of a new family of double incomplete cubane-like clusters $[(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_3SCu_2X(\mu-X)]_2$ $(X=Cl^-,Br^-,SCN^-)$ and cubane-like clusters $[(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_4(CuX)_2]$ $(X=Br^-,SCN^-,CN^-)$

Zhi-Gang Ren ^{a,b}, Hong-Xi Li ^a, Ling-Ling Li ^a, Yong Zhang ^a, Jian-Ping Lang ^{a,b,*}, Jun-Yi Yang ^c, Ying-Lin Song ^{c,*}

a School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 215123, Jiangsu, People's Republic of China
b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences,
Shanghai 200032, People's Republic of China

Received 11 December 2006; received in revised form 19 January 2007; accepted 23 January 2007 Available online 30 January 2007

Abstract

Reactions of trans-[$(\eta^5-C_5Me_5)_2Mo_2(\mu-S)_2S_2$] (1) with 2 equiv. of CuX (X = Cl⁻, Br⁻, SCN⁻, CN⁻) in refluxing acetonitrile resulted in a new set of Mo/Cu/S cluster compounds [$(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_3SCu_2Cl(\mu-Cl)$]₂ (2), [$(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_4(CuBr)$] (3) and [$(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_3SCu_2Br(\mu-Br)$]₂ (4), [$(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_4(CuSCN)$]₂ (5) and [$(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_3SCu_2(SCN)(\mu-SCN)$]₂ (6) and [$(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_4(CuCN)$] (7). Compounds 2–7 were fully characterized by elemental analysis, IR, UV-Vis, ¹H NMR and single-crystal X-ray crystallography. Compounds 2, 4 and 6 consist of two incomplete cubane-like [$(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_3SCu_2X$] species bridged by a pair of μ -X⁻ anions while 3, 5 and 7 contain a cubane-like [$(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_4Cu_2$] core with each of two terminal X⁻ coordinated at each copper(I) center. The third-order nonlinear optical (NLO) properties of 2–5 and 7 along with [$(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_4(CuCl)_2$] in CH₂Cl₂ were investigated by using Z-scan technique at 532 nm. All these clusters showed strong third-order NLO absorption effects and self-defocusing properties. © 2007 Elsevier B.V. All rights reserved.

Keywords: Molybdenum; Copper; Cluster; Sulfide; Molecular structures; Third-order nonlinear optical properties

1. Introduction

The reactions of thiomolybdates and thiotungstates $[MO_{4-n}S_n]^{2-}$ and $[(\eta^5-C_5Me_5)MS_3]^-$ (M=Mo, W) with copper(I) salts have been extensively investigated due to their rich chemistry [1–27], and their relations to biological systems [1,5,6,28,29], and electro/photonic materials

E-mail address: jplang@suda.edu.cn (J.-P. Lang).

[11,15,16,24,26,30–39]. However, only a few reactions are involved in the utilization of the disulfido-bridged dimolybdenum clusters [Cp'₂Mo₂S₄] (Cp' = η^5 -C₅H₅, η^5 -C₅H₄Me or η^5 -C₅Me₅) [40,41]. For example, reactions of a solution containing *trans*-[(η^5 -C₅Me₅)₂Mo₂(μ -S)₂S₂] (1) with 2 equiv. of CuCl in toluene gave rise to a cubane-like cluster [(η^5 -C₅Me₅)₂Mo₂(μ ₃-S)₄(CuCl)₂] [40].

On the other hand, we have been interested in the synthesis of Mo(W)/Cu/S clusters derived from $[MO_{4-n}S_n]^{2-}$ and $[(\eta^5-C_5Me_5)MS_3]^-$ (M = Mo, W) [13,14,16–27,30–32,39]. Some of these clusters exhibited good third-order nonlinear

^c School of Physical Science and Technology, Suzhou University, Suzhou 215006, Jiangsu, People's Republic of China

 $^{^*}$ Corresponding authors. Tel.: + 86 512 6588 2865; fax: + 86 512 6588 0089 (J.-P. Lang).

optical (NLO) properties in solution [16,26,30–32,36,37,39]. In order to expand the chemistry of Mo(W)/Cu/S clusters and screen out clusters with better NLO performances. we have became to adopt other Mo(W)/S precursors including 1 [41–43]. In fact, we have recently reported that treatment of a suspension of 1 in methylene dichloride with 2 equiv. of CuI at ambient temperature afforded an incomplete cubane-like cluster $[(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_3S(CuI)_2]$ while a *cis*-isomer $[(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_4(CuI)_2]$ could isolated through heating $[(\eta^5-C_5Me_5)_2Mo_2(\mu_3-$ S)₃S(CuI)₂] either in solution or in solid state [41]. Interestingly, both clusters in CH₂Cl₂ showed better NLO effects than those of their cluster precursor 1. The results encouraged us to further explore reactions of 1 with other copper(I) halides or pseudohalides CuX (X = Cl, Br, SCN, CN) systemically and the third-order NLO properties of the resulting products. In this paper, we report syntheses, crystal structures and third-order NLO properties of a new family of double incomplete cubane-like clusters and cubane-like clusters derived from 1: $[(\eta^5-C_5Me_5)_2Mo_2 (\mu_3-S)_3SCu_2Cl(\mu-Cl)]_2$ (2), $[(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_4(CuBr)_2]$ (3) and $[(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_3SCu_2Br(\mu-Br)]_2$ (4), $[(\eta^5-c_5Me_5)_2Mo_2(\mu_3-S)_3SCu_2Br(\mu-Br)]_2$ $C_5Me_5)_2Mo_2(\mu_3-S)_4(CuSCN)_2$ (5) and $[(\eta^5-C_5Me_5)_2Mo_2$ $(\mu_3-S)_3SCu_2(SCN)(\mu-SCN)]_2$ (6) and $[(\eta^5-C_5Me_5)_2Mo_2]_2$ $(\mu_3-S)_4(CuCN)_2$] (7).

2. Results and discussion

2.1. Synthesis and spectral characterization of 2-7

Treatment of 1 with 2 equiv. of CuCl in refluxing CH₃CN followed by a standard workup afforded the known single cubane-like cluster $[(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_4-$ (CuCl)₂] (33% yield) and a new double incomplete cubane-like cluster 2 (51% yield) (Scheme 1). Similar reactions of 1 with 2 equiv. of CuBr produced 3 and 4 in 46% and 30% yields, respectively. It is noticed that the double incomplete cubane-like cluster 2 or 4 gradually underwent the trans-to-cis isomerization [41] to form the cubane-like cluster $[(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_4(CuX)_2]$ (X = Cl, Br (3)) during the reaction period. For example, reactions of 4 in refluxing CH₃CN for 20 h followed by column chromatography on silica gave rise to a mixture of 3 (38% yield) and 4 (57% yield). Continuous heating of this solution of 4 did not significantly increase the yield of 3 (41% yield) but 4 (48% yield) became decomposed after a heating period of 40 h and some unknown species occurred in the ¹H NMR spectra. Similar phenomena were once observed in their iodide analogue [41], though 2 or 4 may be cleaved into 2 equiv. of incomplete cubane-like $[(\eta^5-C_5Me_5)_2Mo_2(\mu_3-\mu_5)_2Mo_2(\mu_3-\mu_5)_2Mo_2(\mu_3-\mu_5)_2Mo_2(\mu_3-\mu_5)_2Mo_2(\mu_3-\mu_5)_2Mo_2(\mu_3-\mu_5)_2Mo_2(\mu_3-\mu_5)_2Mo_2(\mu_3-\mu_5)_2Mo_2(\mu_3-\mu_5)_2Mo_2(\mu_3-\mu_5)_2Mo_2(\mu_3-\mu_5)_2Mo_2(\mu_3-\mu_5)_2Mo_2(\mu_3-\mu_5)_2Mo_2(\mu_3-\mu_5)_2Mo_2(\mu_5-\mu_5)$ S)₃S(CuX)₂] clusters before the isomerization.

Intriguingly, analogous reactions of 1 with 2 equiv. of CuSCN gave rise to the single cubane-like cluster 5 in 31% yield coupled with the double incomplete cubane-like cluster 6 (\sim 2% yield) (Scheme 1). In the case of CuCN, no expected double incomplete cubane-like cluster $[(\eta^5 C_5Me_5$ ₂ $Mo_2(\mu_3-S)_3SCu_2(CN)(\mu-CN)$ ₂ but cubane-like cluster 7 was isolated in 23% yield. In both cases, the yield for the double incomplete cubane-cluster was quite low, which may be attributed to the formation of a large amount of insoluble dark brown solids during the reaction. Short reaction time (2-3 h) or running the reactions at low temperatures (e.g. 0 °C) did not improve the yield for the double incomplete cubane-like cluster 6. It is understandable that both SCN⁻ and CN⁻ are versatile bridging ligands that may link some Mo/Cu/S cluster species existed in the reaction mixture to form certain kinds of insoluble Mo/Cu/S cluster-based coordination polymers [18,27,44]. In fact, the IR spectra revealed that these solids contained the SCN⁻ (2118/2073 cm⁻¹) or CN⁻ (2129/ 2117 cm⁻¹) stretching vibrations and the bridging Mo-S vibration at 427 or 453 cm⁻¹. X-ray fluorescence analysis conformed that these samples contained Mo, Cu and S elements (Mo:Cu:S = 2:2:6 for $X = SCN^-$ and 2:2:4 for $X = CN^{-}$). However, numerous attempts to grow their single crystals to elucidate their actual compositions failed.

Compounds 2–7 are readily soluble in CH₂Cl₂ or CHCl₃, slightly soluble in CH₃CN, benzene or acetone,

Download English Version:

https://daneshyari.com/en/article/1325385

Download Persian Version:

https://daneshyari.com/article/1325385

<u>Daneshyari.com</u>