Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Metallacarboranes and triple-decker complexes with the (C₄Me₄)Pt fragment

Dmitry A. Loginov, Zoya A. Starikova, Elena A. Petrovskaya, Alexander R. Kudinov*

A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119991 Moscow GSP-1, Russian Federation

ARTICLE INFO

Article history: Received 22 May 2008 Received in revised form 3 September 2008 Accepted 22 September 2008 Available online 27 September 2008

Keywords: Metallacarboranes Iron Platinum Rhodium Triple-decker complexes

1. Introduction

The fragments $[Cp^*M]^{2+}$ (M = Rh, Ir) are widely used in organometallic synthesis [1]. In particular, using these fragments a number of metallacarboranes [2–5] and triple-decker complexes [6–8] have been prepared. In contrast, chemistry of the related fragment $[Cb^*Pt]^{2+}$ ($Cb^* = \eta$ - C_4Me_4) is notably less developed. In 1975, Canziani and Malatesta have described a two-step procedure for the preparation of the chloride complex Cb*PtCl₂ from (CO)₂PtCl₂ and 2-butyne in 47% yield [9]. Moreto and Maitlis have synthesized this compound in 60% yield using more available acetonitrile complex (MeCN)₂PtCl₂ instead of (CO)₂PtCl₂ [10]. The chloride Cb*PtCl₂ has been proven to be a useful synthon of the [Cb*Pt]²⁺ fragment [11]. In particular, Herberich et al. have synthesized the sandwich cations $[Cb^*PtCp]^+$ and $[Cb^*Pt(\eta-C_6Me_6)]^{2+}$ via the intermediate solvate complex [Cb*Pt(Me₂CO)₃]²⁺ [12]. Herein we report the synthesis and structures of the first Cb*Pt-containing metallacarborane and triple-decker complexes.

2. Results and discussion

2.1. Synthesis

We found that reactions of Cb^*PtCl_2 with the carborane anions $[7,8-C_2B_9H_{11}]^{2-}$ and $[9-SMe_2-7,8-C_2B_9H_{10}]^-$ afford complexes 1

ABSTRACT

Complex Cb*PtCl₂ (Cb* = η -C₄Me₄) reacts with the carborane anions [7,8-C₂B₉H₁₁]²⁻ and [9-SMe₂-7,8-C₂B₉H₁₀]⁻ giving platinacarboranes Cb*Pt(η -7,8-C₂B₉H₁₁) (1) and [Cb*Pt(η -9-SMe₂-7,8-C₂B₉H₁₀]⁺ (2), respectively. Reactions of the [Cb*Pt]²⁺ fragment (as a labile nitromethane solvate) with the sandwich compounds Cp*Fe(η -C₅H₃Me₂BMe) and Cp*Rh(η ⁵-C₄H₄BPh) afford the triple-decker cations [Cb*Pt(μ - η : η -C₅H₃Me₂BMe)FeCp*]²⁺ (3) and [Cb*Pt(μ - η ⁵: η ⁵-C₄H₄BPh)RhCp*]²⁺ (4) with bridging boratabenzene and borole ligands. The structures of 1 and 3(CF₃SO₃)₂ were determined by X-ray diffraction. © 2008 Elsevier B.V. All rights reserved.

(71%) and **2** (17%) (Scheme 1).¹ The low yield of **2** may be caused by a side demethylation of the SMe₂ group [13].

Electrophilic stacking of sandwich compounds with $[(ring)M]^{n+}$ fragments is an effective method for the preparation of cationic triple-decker complexes [14]. In particular, complexes with bifacially-bonded boratabenzene [6,15] and borole [8,16] ligands have been prepared by this way. Using the stacking reaction of $Cp^*Fe(n-C_5H_3Me_2BMe)$ with the labile solvate $[Cb^*Pt(MeNO_2)_3]^{2+}$ we synthesized the μ -boratabenzene triple-decker complex 3 (17%) (Scheme 2). Similar reaction of $Cp^*Rh(\eta^5-C_4H_4BPh)$ affords the μ -borole cation **4** (64%). The low yield of **3** may be explained by easy oxidation of $Cp^*Fe(\eta-C_5H_3Me_2BMe)$ in contrast to $Cp^{*}Rh(\eta^{5}-C_{4}H_{4}BPh)$. The solvate complex $[Cb^{*}Pt(MeNO_{2})_{3}]^{2+}$ was generated by treatment of Cb*PtCl₂ with Ag⁺ in nitromethane. It should be emphasized, that cations **3** and **4** are the first examples of stable Cb*Pt-containing triple-decker complexes. Herberich et al. have described earlier the formation of the thermally unstable µcyclopentadienyl cation $[Cb^*Pt(\mu-\eta:\eta-Cp)FeCp^*]^{2+}$ which was detected only by ¹H NMR spectroscopy at 0 °C [14b]. Greater stability of triple-decker complexes with bridging boron heterocycles is a general tendency associated with favorable balance of donor and acceptor properties of these ligands.

2.2. X-ray diffraction study

The structures of the metallacarborane complex 1 and the triple-decker cation 3 are shown in Figs. 1 and 2. Selected bond

^{*} Corresponding author. Tel.: +7 499 135 9367; fax: +7 499 135 5085. *E-mail address:* arkudinov@ineos.ac.ru (A.R. Kudinov).

⁰⁰²²⁻³²⁸X/\$ - see front matter \odot 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2008.09.029

 $^{^{1}}$ All the cationic complexes described here were isolated as salts with the PF₆, BF₄, or CF₃SO₃ anions.

Scheme 1.

lengths and angles are given in Tables. 1 and 2. The dihedral angle between the C_4 and C_2B_3 planes in **1** is equal to 4.7°. In the case of **3** the crystallographic cell contains two independent molecules; data for only one of them will be used in further discussion. Cation **3** is formed by three cyclic frames (C₄, C₅B, and C₂B₃); the dihedral angle C_4/C_5B (6.3°) is somewhat larger than C_5B/C_5 (2.7°). We have shown earlier, that the metal-to-ring $Co
dots C_4$ distance in Cb^*Co complexes is strongly dependent on donor-acceptor ability of other ligands at the Co atom [17]. In contrast, the $Pt \cdots C_4$ distance

Fig. 1. Structure of complex 1. Atoms are represented by 50% thermal ellipsoids.

Fig. 2. Structure of cation 3. Atoms are represented by 50% thermal ellipsoids.

Table 1 Selected bond lengths (Å) and angles (°) for compound 1

Pt(1)–C(1)	2.246(6)	C(3)-C(4)	1.457(9)
Pt(1)-C(2)	2.247(7)	C(4)-C(5)	1.471(10)
Pt(1)-C(3)	2.108(6)	C(5)-C(6)	1.466(9)
Pt(1)-C(4)	2.188(6)	C(3)-C(6)	1.467(10)
Pt(1)-C(5)	2.160(7)	C(1)-C(2)	1.622(10)
Pt(1)-C(6)	2.099(7)	C(1)-B(4)	1.736(10)
Pt(1)-B(4)	2.219(8)	C(2)-B(7)	1.737(10)
Pt(1)-B(7)	2.240(8)	B(4)-B(8)	1.827(12)
Pt(1)-B(8)	2.226(7)	B(7)-B(8)	1.844(10)
C(3) - C(4) - C(5)	89.8(5)	C(2)-B(7)-B(8)	104.7(5)
C(4) - C(5) - C(6)	90.0(6)	B(7)-B(8)-B(4)	106.1(5)
C(5)-C(6)-C(3)	89.6(5)	B(8)-B(4)-C(1)	104.7(5)
C(6)-C(3)-C(4)	90.6(6)	B(4)-C(1)-C(2)	112.6(6)
C(1)-C(2)-B(7)	111.8(5)		

l'able 2							
Selected bond	lengths	(Å) and	angles	(°)	for	cation	3

Pt(1)-C(1)	2.364(4), 2.392(4)	Fe(1)-C(17)	2.058(4), 2.073(4)
Pt(1)-C(2)	2.457(4), 2.475(4)	Fe(1)-C(18)	2.073(4), 2.071(4)
Pt(1)-C(3)	2.489(5), 2.483(5)	Fe(1)-C(19)	2.071(4), 2.062(4)
Pt(1)-C(4)	2.462(4), 2.418(4)	Fe(1)-C(20)	2.068(4), 2.068(4)
Pt(1)-C(5)	2.373(4), 2.326(4)	Fe(1)-C(21)	2.068(4), 2.074(5)
Pt(1)-B(1)	2.376(5), 2.373(5)	C(1) - C(2)	1.436(6), 1.450(6)
Pt(1)-C(9)	2.116(4), 2.109(4)	C(2) - C(3)	1.454(6), 1.443(6)
Pt(1)-C(10)	2.147(4), 2.130(4)	C(3) - C(4)	1.447(6), 1.452(6)
Pt(1)-C(11)	2.179(5), 2.176(5)	C(4) - C(5)	1.445(6), 1.428(6)
Pt(1)-C(12)	2.134(4), 2.125(4)	B(1)-C(1)	1.557(6), 1.547(7)
Fe(1)-C(1)	2.136(4), 2.146(4)	B(1)-C(5)	1.564(7), 1.573(6)
Fe(1)-C(2)	2.079(4), 2.088(4)	C(9)-C(10)	1.459(6), 1.462(6)
Fe(1)–C(3)	2.059(5), 2.060(5)	C(10)-C(11)	1.460(6), 1.456(6)
Fe(1) - C(4)	2.070(5), 2.079(4)	C(11)-C(12)	1.459(6), 1.443(6)
Fe(1)–C(5)	2.140(4), 2.139(4)	C(9)-C(12)	1.480(6), 1.460(6)
Fe(1)-B(1)	2.218(5), 2.219(5)		
C(1)-C(2)-C(3)	120.9(4), 121.0(4)	B(1)-C(1)-C(2)	122.5(4), 122.1(4)
C(2)-C(3)-C(4)	120.8(4), 120.9(4)	C(9)-C(10)-C(11)	90.9(4), 89.6(4)
C(3) - C(4) - C(5)	121.5(4), 121.2(4)	C(10)-C(11)-C(12)	89.9(4), 90.5(4)
C(4)-C(5)-B(1)	121.5(4), 122.0(4)	C(11)-C(12)-C(9)	90.1(3), 90.2(4)
C(1)-B(1)-C(5)	112.8(4), 112.8(4)	C(12)-C(9)-C(10)	89.1(4), 89.6(4)

Download English Version:

https://daneshyari.com/en/article/1325407

Download Persian Version:

https://daneshyari.com/article/1325407

Daneshyari.com