

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Synthesis of $[Ru_3(CO)_9(\mu-dppf){P(C_4H_3E)_3}]$ (E = O, S) and thermally induced cyclometalation to form $[(\mu-H)Ru_3(CO)_7(\mu-dppf){\mu_3-(C_4H_3E)_2P(C_4H_2E)}]$ (dppf = 1,1'-bis(diphenylphosphino)ferrocene)

Md. Kamal Hossain^{a,b}, Subas Rajbangshi^b, Ahibur Rahaman^{a,b}, Md. Arshad H. Chowdhury^b, Tasneem A. Siddiquee^c, Shishir Ghosh^{b,d}, Michael G. Richmond^e, Ebbe Nordlander^a, Graeme Hogarth^{d,*}, Shariff E. Kabir^{b,*}

^a Inorganic Chemistry Research Group, Chemical Physics, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden

^b Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh

^c Department of Chemistry, Tennessee State University, 3500 John A. Merritt Blvd., Nashville, TN 37209, USA

^d Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ, UK

^e Department of Chemistry, University of North Texas, 1155 Union Circle #305070, Denton, TX 76203, USA

ARTICLE INFO

Article history: Received 9 July 2013 Received in revised form 10 September 2013 Accepted 15 September 2013

Keywords: Triruthenium Trifurylphosphine Trithienylphosphine Cyclometalation Diphosphine DFT

ABSTRACT

The new clusters $[Ru_3(CO)_9(\mu-dppf){P(C_4H_3E)_3}]$ (**1**, E = O; **2**, E = S) have been prepared from the Me₃NOinduced decarbonylation of $[Ru_3(CO)_{10}(\mu-dppf)]$ in the presence of PFu₃ (E = O) and PTh₃ (E = S), respectively. Upon thermolysis in benzene, the major products are the cyclometalated clusters $[(\mu-H)$ $Ru_3(CO)_7(\mu-dppf){\mu_3-(C_4H_3E)_2P(C_4H_2E)}]$ (**3**, E = O; **4**, E = S). This thermolytic behavior is in marked contrast to that previously noted for the analogous bis(diphenylphosphino)methane (dppm) complexes $[Ru_3(CO)_9(\mu-dppm){P(C_4H_3E)_3}]$, in which both carbon—hydrogen and carbon—phosphorus bond activation yields furyne- and thiophyne-capped clusters. The crystal structures of **1**, **3** and **4** are presented and reveal that phosphine migration has occurred during the transformation of **1.2** into **3.4**, respectively. The possible relation of the observed reactivity to the relative flexibilities of the diphosphine ligands is discussed. Density functional calculations have been performed on the model cluster $[Ru_3(CO)_9(\mu-Me_4$ $dppf){P(C_4H_3O)_3}]$, and these data are discussed relative to the ground-state energy differences extant between the different isomeric forms of this cluster. The dynamic NMR behavior displayed by the metalated thienyl ring in cluster **4** has also been investigated by computational methods, and the free energy of activation for the "windshield wiper" motion of the activated thienyl moiety determined. © 2013 Elsevier B.V. All rights reserved.

1. Introduction

In recent work we have studied the coordination chemistry of trifurylphosphine (PFu₃) and trithienylphosphine (PTh₃) [1] since they are potential alternatives to triphenylphosphine in a range of stoichiometric and catalytic transformations [2], and may also function as a source of novel alkynyl derivatives based on furyne (C₄H₂O) and thiophyne (C₄H₂S) platforms, which are generated as a result of both carbon—phosphorus and carbon—hydrogen bond activation [3,4]. Thus, we have found that the triruthenium bis(-diphenylphosphino)methane (dppm) complexes [Ru₃(CO)₉(μ -dppm){P(C₄H₃E)₃] convert cleanly upon mild heating to afford the furyne and thiophyne clusters [(μ -H)Ru₃(CO)₇(μ -dppm)(μ ₃-C₄H₂E)

* Corresponding authors. E-mail address: g.hogarth@ucl.ac.uk (G. Hogarth). { μ -P(C₄H₃E)₂] (Scheme 1) in good yields [3], thus allowing their chemistry to be explored [5]. In seeking to further access these novel metal-bound alkynes, we have attempted to exchange the relatively rigid diphosphine, dppm, for the more flexible 1,1'-bis(-diphenylphosphino)ferrocene (dppf) ligand. We herein report that while the new clusters [Ru₃(CO)₉(μ -dppf){P(C₄H₃E)₃}] (1, E = O; 2, E = S) are readily prepared, their thermal behavior is very different to that observed for the dppm-derivatives, with ring cyclometalation being the major reaction pathway even under forcing conditions.

2. Experimental

2.1. General remarks

Unless otherwise stated, all reactions were carried out under a nitrogen atmosphere using standard Schlenk techniques. Solvents

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jorganchem.2013.09.021

were dried and distilled prior to use by standard methods. All phosphines were purchased from Acros Chemicals Inc. and used without further purification. The cluster [Ru₃(CO)₁₀(μ -dppf)] was prepared according to a published procedure [6]. IR spectra were obtained on a Shimadzu FTIR-8101 spectrophotometer and ¹H and ³¹P{¹H} NMR spectra were recorded on a Bruker VNMRS 400 MHz spectrometer. All chemical shifts are reported in δ units with reference to the residual protons of the deuterated solvents for protons and to external H₃PO₄ for ³¹P chemical shifts. Elemental analyses were performed by the Microanalytical laboratory of Wazed Miah Science Research Centre at Jahangirnagar University.

2.2. Synthesis of $[Ru_3(CO)_9(\mu-dppf)(PFu_3)]$ (1)

A dichloromethane solution (15 mL) of Me₃NO (14 mg, 0.19 mmol) was added dropwise to a mixture of [Ru₃(CO)₁₀(μ -dppf)] (0.20 g, 0.18 mmol) and PFu₃ (41 mg, 0.18 mmol) in dichloromethane (25 mL) and after stirring at room temperature for 3 h the color became deep red. The solvent was removed under reduced pressure and the residue chromatographed by TLC on silica gel. Elution with hexane/CH₂Cl₂ (7:3, v/v) developed a single band which afforded [Ru₃(CO)₉(μ -dppf)(PFu₃)] (1) (0.17 g, 70%), as red crystals after recrystallization from hexane/CH₂Cl₂ at –4 °C. Anal. Calcd. for C₅₅H₃₇FeO₁₂P₃Ru₃: C, 49.22; H, 2.76. Found: C, 49.61; H, 2.98%. IR (ν _{CO}, CH₂Cl₂): 2053 w, 1993 s br, 1982 s br cm⁻¹. ¹H NMR (CDCl₃): δ 7.63 (s, 3H), 7.54–7.36 (br m, 20H), 6.66 (brs, 3H), 6.44 (br, 3H), 4.51 (vbr, 4H), 4.27 (d, *J* 7.0, 4H). ³¹P{¹H} NMR (CDCl₃): 22.9 (s, 1P), 22.8 (d, *J* 20.2, >1P), -14.7(d, *J* 20.2, 1P). FAB-MS: *m*/z 1341 (M⁺), 1313 (M⁺ – CO), 787 (M⁺ – dppf).

2.3. Synthesis of $[Ru_3(CO)_9(\mu-dppf)(PTh_3)]$ (2)

To a dichloromethane solution (40 mL) of $[Ru_3(CO)_{10}(\mu-dppf)]$ (0.20 g, 0.18 mmol) and PTh₃ (49 mg, 0.176 mmol) was added dropwise a dichloromethane solution (15 mL) of Me₃NO (16 mg, 0.20 mmol), and the reaction mixture was stirred at room temperature for 2 h during which time the color changed from orange to red. The solvent was removed under reduced pressure and the residue chromatographed by TLC on silica gel. Elution with hexane/ CH₂Cl₂ (7:3, v/v) afforded [Ru₃(CO)₉(µ-dppf)(PTh₃)] (2) (0.17 g, 68%) as red crystals after recrystallization from CH₂Cl₂/hexane at -4 °C. Anal. Calcd. for C₅₅H₃₇FeO₉P₃Ru₃S₃: C, 47.40; H, 2.66. Found: C, 49.11; H, 2.83%. IR (v_{CO}, CH₂Cl₂): 2051 w, 1990 vs, 1977 br cm⁻¹; ¹H NMR (CDCl₃) 298 K: δ 7.56 (t, J 8.0, 3H), 7.55 (m, 3H), 7.52 and 7.40 (brs, 20H), 7.15 (dt, / 8.0, 1.5, 3H), 4.54 (vbr, 4H), 4.36 (s, 4H); 243 K: δ 7.80–7.32 (br, 26H), 7.19 (m, 3H), 5.21 (brs, 1H), 5.14 (brs, 1H), 4.47 (brs, 4H), 3.98 (br,s 1H), 3.88 (brs, 1H). ³¹P{¹H} NMR (CDCl₃) 298 K: δ 25.5 (brs, 1P), 22.8 (brs, 1P), 1.5 (m, 1P). ${}^{31}P{}^{1}H{}$ NMR (CDCl₃) 243 K: δ 27.1 (s, 1P), 23.8 (d, J 14.6, 1P), 1.0 (d, J 14.6, 1P).

2.4. Thermolysis of $[Ru_3(CO)_9(\mu-dppf)(PFu_3)]$ (1)

A benzene solution (30 mL) of **1** (50 mg, 0.037 mmol) was heated to reflux for 3 h during which time the red color deepened.

The solvent was removed under reduced pressure and the residue chromatographed by TLC on silica gel. Elution with cyclohexane/ CH₂Cl₂ (7:3, v/v) developed five bands. The fourth was by far the major band and gave [(μ -H)Ru₃(CO)₇(μ -dppf){ μ_3 -Fu₂P(C₄H₂O)}] (**3**) (12 mg, 25%), as pale yellow crystals after recrystallization from CH₂Cl₂/hexane at -4 °C. Anal. Calcd. for C₅₃H₃₇O₁₀P₃Ru₃Fe: C, 49.51; H, 2.90. Found: C, 49.70; H, 3.33. IR (*v*CO, CH₂Cl₂) 2042 vs, 2001 s, 1967 w, 1956 w, 1942 vw cm⁻¹; ¹H NMR (CDCl₃): δ 7.75 (m, 3H), 7.63 (d, J 1.9, 1H), 7.54–7.22 (m, 16H), 7.14 (t, J 6.1, 2H), 6.77 (s, 1H), 6.65 (s, 1H), 6.52 (br, 1H), 6.45 (br, 1H), 5.98 (d, J 2.5, 1H), 5.58 (d, J 3.1, 1H), 4.88 (s, 1H), 4.37 (s, 1H), 4.34 (s, 1H), 4.05 (s, 1H), 3.95 (s, 1H), 3.65 (s, 1H), 3.50 (s, 1H), 3.08 (s, 1H), -16.88 (dt, J 16.8, 12.0, 1H); ³¹P{¹H} NMR (CDCl₃): δ 36.7 (s, 1P), 23.6 (s, 1P), -11.44 (t, J 21.4, 1P).

2.5. Thermolysis of $[Ru_3(CO)_9(\mu-dppf)(PTh_3)]$ (2)

A benzene solution (30 mL) of 2 (50 mg, 0.036 mmol) was heated to reflux for 3 h during which time the red color deepened. The solvent was removed under reduced pressure and the residue chromatographed by TLC on silica gel. Elution with cyclohexane/ CH_2Cl_2 (7:3, v/v) developed five bands. The fourth band was the major product and gave $[(\mu-H)Ru_3(CO)_7(\mu-dppf)\{\mu_3-Th_2P(C_4H_2S)\}]$ (4) (8 mg, 17%), as pale yellow crystals after recrystallization from CH₂Cl₂/hexane at -4 °C. Anal. Calcd. for C₅₃H₃₇O₇S₃Ru₃Fe: C, 47.72; H, 2.80. Found: C, 47.70; H, 3.13%. IR (vCO, CH₂Cl₂) 2040 vs, 1999 s, 1966 sh, 1956 w cm⁻¹; ¹H NMR (CDCl₃) 298 K: δ 8.06 (dd, J 8.0, 4.0, 1H), 7.76 (m, 2H), 7.66–7.21 (m, 22H), 7.13 (d, J 4.0, 1H), 6.60 (t, J 4.0, 1H), 5.70 (t, J 4.0, 1H), 4.92 (s, 1H), 4.55 (s, 1H), 4.48 (s, 1H), 4.24 (s, 1H), 4.04 (s, 1H), 3.99 (s, 1H), 3.33 (s, 1H), 3.19 (s, 1H), -16.35 (dt, J 18.0, 11.6, 1H); 243 K: δ 8.10 (dd, J 8.0, 4.0, 1H), 7.80 (d, J 4.0, 1H), 7.72 (dd, J 8.0, 4.0, 3H), 7.65–7.25 (m, 18H), 7.19 (t, J 8.0, 2H), 7.10 (d, J 4.0, 1H), 6.62 (t, J 4.0, 1H), 5.58 (m, 1H), 4.81 (s, 1H), 4.56 (s, 1H), 4.48 (s, 1H), 4.24 (s, 1H), 4.06 (s, 1H), 3.97 (s, 1H), 3.31 (s, 1H), 3.01 (s, 1H), -16.44 (dt, J 18.0, 11.6, 1H); $^{31}P{^{1}H}$ NMR (CDCl₃) 298 K: δ 31.3 (d, J 29.2, 1P), 22.1 (d, J 19.4, 1P), 11.55 (dd, J 29.2, 19.4, 1P); 243 K ³¹P $\{^{1}H\}$ NMR (CDCl₃): δ 31.0 (d, / 27.5, 1P), 22.4 (d, / 21.1, 1P), 11.41 (dd, / 27.5, 21.1, 1P).

2.6. X-ray structure determinations

Single crystals of **1** were mounted on fibers and diffraction data collected on a Bruker SMART APEX diffractometer using Mo-K α radiation ($\lambda = 0.71073$ Å). Single crystals of **3** and **4** were coated with Paraton N oil, suspended in a small fiber loop, and diffraction data collected on a Bruker D8 SMART APEX CCD sealed tube diffractometer with graphite monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). Data were measured using a series of combination of φ and ω scans with 5 s frame exposures and 0.3° frame widths. Data collection, indexing and initial cell refinements were all carried out using SMART software [7]. Frame integration and final cell refinements were done using SAINT software [8]. SADABS [9] was used to carry out absorption corrections. The structures were solved using the Patterson method and difference Fourier

Download English Version:

https://daneshyari.com/en/article/1325581

Download Persian Version:

https://daneshyari.com/article/1325581

Daneshyari.com