

Journal ofOrgano metallic Chemistry

Journal of Organometallic Chemistry 691 (2006) 4065-4075

www.elsevier.com/locate/jorganchem

Syntheses, reactions, and structures of osmium(II) distannyl complexes, $L_nOs-SnMe_2SnR_3$ (R = Me, Ph), from reaction between $L_nOs-SnClMe_2$ and either $LiSnMe_3$ or $KSnPh_3$

Michael M. Möhlen, Clifton E.F. Rickard, Warren R. Roper *, George R. Whittell, L. James Wright *

Department of Chemistry, The University of Auckland, Private Bag 92019, Auckland, New Zealand
Received 31 March 2006; received in revised form 2 June 2006; accepted 8 June 2006
Available online 15 June 2006

Abstract

Reaction between $Os(SnClMe_2)(\kappa^2-S_2CNMe_2)(CO)(PPh_3)_2$ and either $LiSnMe_3$ or $KSnPh_3$ produces the distannyl complexes, $Os(SnMe_2SnMe_3)(\kappa^2-S_2CNMe_2)(CO)(PPh_3)_2$ (1) or $Os(SnMe_2SnPh_3)(\kappa^2-S_2CNMe_2)(CO)(PPh_3)_2$ (3), respectively. Similarly, reaction between $Os(SnClMe_2)Cl(CO)_2(PPh_3)_2$ (6) and $KSnPh_3$ produces the distannyl complex, $Os(SnMe_2SnPh_3)Cl(CO)_2(PPh_3)_2$ (7). In the ^{119}Sn NMR spectra of these stable osmium(II) distannyl complexes both the α -Sn and β -Sn atoms show well-resolved $^{119}Sn^{-119}Sn$ and $^{119}Sn^{-117}Sn$ coupling. Each of these three distannyl complexes can be selectively functionalised at the α -Sn atom by reaction with $SnCl_2Me_2$ giving $Os(SnClMeSnMe_3)(\kappa^2-S_2CNMe_2)(CO)(PPh_3)_2$ (2), $Os(SnClMeSnPh_3)(\kappa^2-S_2CNMe_2)(CO)(PPh_3)_2$ (4), and $Os(SnClMeSnPh_3)Cl(CO)_2(PPh_3)_2$ (8), respectively. Treatment of compounds 3 or 7 with iodine also cleaves one α -methyl group, selectively, to give $Os(SnI-MeSnPh_3)(\kappa^2-S_2CNMe_2)(CO)(PPh_3)_2$ (5), or $Os(SnIMeSnPh_3)Cl(CO)_2(PPh_3)_2$ (9). Crystal structures for complexes 3 and 7 have been determined.

© 2006 Elsevier B.V. All rights reserved.

 $\textit{Keywords:} \ \ Distannyl\ complex;\ Tin;\ Osmium;\ Selective\ \alpha-Sn\ functionalisation;\ X-ray\ crystal\ structure$

1. Introduction

Disilarly complexes of type L_nM –SiR₂–SiR₃, when coordinatively unsaturated, have proved to be interesting precursors for silylene complexes through reversible migration of the β -silyl group to the metal [1,2]. Furthermore, in regioselective reactions the α -silicon in $Cp^*(CO)_2FeSiMe_2-SiMe_3$ is bromodemethylated by reaction with BBr₃ to form $Cp^*(CO)_2FeSiBr_2SiMe_3$ [3], and the α -Si–H bonds

E-mail address: w.roper@auckland.ac.nz (W.R. Roper).

in Cp*(CO)₂FeSiH₂SiH₃ react selectively with either CCl₄ or with dimethyldioxirane to give either Cp*(CO)₂FeSi-Cl₂SiH₃ [4] or Cp*(CO)₂FeSi(OH)₂SiH₃ [5], respectively.

This interesting chemistry prompted us to examine corresponding distannyl complexes of type L_nM-SnR₂-SnR₃. Most disilanyl complexes of type L_nM-SiR₂-SiR₃ have been prepared beginning with a readily available and appropriately substituted disilane, and introducing the metal either as an anion or through an elimination reaction [1,2]. This approach for the corresponding distannyl complexes is less favourable because of the scarcity of suitably substituted distannanes. The very few reported distannyl complexes of type L_nM-SnR₂-SnR₃ include (PPh₃)₂PhPt-SnPh₂SnPh₃ (which was neither spectroscopically nor

^{*} Corresponding authors. Tel.: +64 9 373 7999x88320; fax: +64 9 373

structurally characterised) from oxidative addition of a Sn-Ph bond in Sn_2Ph_6 to $Pt(C_2H_4)(PPh_3)_2$ [6] and CpCp*ClHfSnPh₂SnHMes₂ (which was spectroscopically but not structurally characterised) from the complex reaction of CpCp*ClHfSnHMes₂ with Ph₂SnH₂ [7]. Minor products also formed in this reaction include the tristannyl CpCp*ClHfSnPh₂SnPh₂SnHPh₂. Complexes involving the Sn(SnMe₃)₃ ligand, which result from reaction between LiSn(SnMe₃)₃ and the appropriate metal halide, include Cp[P(OPh)₃]₂FeSn(SnMe₃)₃ [8] and Mo₂[Sn(SnMe₃)₃]₂(NMe₂)₂ [9]. Other distannanes substituted with transition metal fragments include the complex, H₂Sn₂[Mn(CO)₅]₄, which results from the remarkable reaction between HMn(CO)₅ and Cp₂Sn [10], Ph₂Sn₂-[FeCp(CO)₂]₄ produced by electrochemical reduction of $PhClSn[FeCp(CO)_{2}]_{2}$ [11] and $Ph_{4}Sn_{2}[Mn(CO)_{5}]_{2}$ [12]. This last complex results from the unexpected reaction between Ph₂ClSnMn(CO)₅ and C₆F₅Li. The authors proposed that the reaction proceeds through an initial lithium-halogen exchange to produce the tin anion, Li[Ph₂SnMn(CO)₅], which then attacks Ph₂ClSnMn(CO)₅ to give the observed product. This observation suggested that reaction between LiSnR₃ and a halostannyl complex, L_nM-SnR₂-X, could offer a general route to distannyl complexes, L_nM-SnR₂-SnR₃.

We had previously developed preparative routes to several halostannyl complexes of osmium which undergo facile substitution reactions to yield novel products, e.g., a stannatranyl complex from $Os(SnI_3)(\kappa^2-S_2CNMe_2)$ -(CO)(PPh₃)₂ and triethanolamine [13], a hydroxystannyl complex, Os(SnMe₂(OH))(κ^2 -S₂CNMe₂)(CO)(PPh₃)₂ from $Os(SnMe_2Cl)(\kappa^2-S_2CNMe_2)(CO)(PPh_3)_2$ with KOH [14], a trihydroxystannyl complex, $Os(Sn(OH)_3)(\kappa^2-S_2CNMe_2)$ - $(CO)(PPh_3)_2$ from $Os(SnI_3)(\kappa^2-S_2CNMe_2)(CO)(PPh_3)_2$ with KOH [15], and the simple SnH₃ complex, Os(SnH₃)- $(\kappa^2-S_2CNMe_2)(CO)(PPh_3)_2$ from $Os(SnI_3)(\kappa^2-S_2CNMe_2)$ -(CO)(PPh₃)₂ with NaBH₄ [16]. Accordingly, we selected two chlorodimethylstannyl complexes, Os(SnMe₂Cl)- $(\kappa^2-S_2CNMe_2)(CO)(PPh_3)_2$ and $Os(SnMe_2Cl)Cl(CO)_2$ -(PPh₃)₂, and examined the reactivity of these two compounds towards the tin anions [SnMe₃] and [SnPh₃] in the salts LiSnMe₃ and KSnPh₃.

In this paper we report: (i) the syntheses of the distannyl complexes $Os(SnMe_2SnMe_3)(\kappa^2-S_2CNMe_2)(CO)-(PPh_3)_2$ (1), $Os(SnMe_2SnPh_3)(\kappa^2-S_2CNMe_2)(CO)(PPh_3)_2$ (3), and $Os(SnMe_2SnPh_3)Cl(CO)_2(PPh_3)_2$ (7) from reaction between $Os(SnClMe_2)(\kappa^2-S_2CNMe_2)(CO)(PPh_3)_2$ and $Li-SnMe_3$, $Os(SnClMe_2)(\kappa^2-S_2CNMe_2)(CO)(PPh_3)_2$ and $KSn-Ph_3$, $OsSnClMe_2)Cl(CO)_2(PPh_3)_2$ (6) and $KSnPh_3$, respectively, (ii) ^{119}Sn NMR spectroscopic data for these stable osmium(II) distannyl complexes which reveal that both the α -Sn and β -Sn atoms show well-resolved $^{119}Sn-^{119}Sn$ and $^{119}Sn-^{117}Sn$ coupling, (iii) crystal structure determinations for distannyl complexes 3 and 7, and (iv) selective functionalisation reactions at the α -tin atom in the distannyl complexes by reaction with either $SnMe_2Cl_2$ or I_2 .

2. Results and discussion

2.1. The syntheses of the distannyl complexes, $Os(SnMe_2SnMe_3)(\kappa^2-S_2CNMe_2)(CO)(PPh_3)_2$ (1), $Os(SnMe_2SnPh_3)(\kappa^2-S_2CNMe_2)(CO)(PPh_3)_2$ (3), and $Os(SnMe_2SnPh_3)Cl(CO)_2(PPh_3)_2$ (7) from reaction between $Os(SnClMe_2)(\kappa^2-S_2CNMe_2)(CO)(PPh_3)_2$ and $LiSnMe_3$, $Os(SnClMe_2)(\kappa^2-S_2CNMe_2)(CO)(PPh_3)_2$ and $KSnPh_3$, $Os(SnClMe_2)Cl(CO)_2(PPh_3)_2$ (6) and $KSnPh_3$, respectively

As illustrated in Schemes 1–3, LiSnMe₃ and KSnPh₃ readily displaces chloride from the SnClMe₂ ligands in Os(SnClMe₂)(κ^2 -S₂CNMe₂)(CO)(PPh₃)₂ and Os(SnClMe₂)-Cl(CO)₂(PPh₃)₂ (6) to form the distannyl complexes 1, 3, and 7 in good yields. All three complexes are colourless crystalline solids and show good solution stability. The IR spectra of 1 and 3 show ν (CO) bands at 1907 and 1895 cm⁻¹, respectively, and the dicarbonyl complex 7 shows two ν (CO) bands at 2017, 1958 cm⁻¹ as expected for a *cis* arrangement of CO ligands. Full spectroscopic data for all the compounds appears in Section 4. The ¹H

$$\begin{array}{c} \text{Me}_2\text{NC} \\ \text{S} \\ \text{NC} \\ \text{S} \\ \text{NC} \\ \text$$

Scheme 1. Synthesis and reactions of $Os(SnMe_2SnMe_3)(\kappa^2-S_2CNMe_2)-(CO)(PPh_3)_2$ (1).

Scheme 2. Synthesis and reactions of $Os(SnMe_2SnPh_3)(\kappa^2-S_2CNMe_2)-(CO)(PPh_3)_2$ (3).

Download English Version:

https://daneshyari.com/en/article/1325703

Download Persian Version:

https://daneshyari.com/article/1325703

Daneshyari.com