FISEVIER

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Effect of anchoring group and valent of cobalt center on the competitive cleavage of C–F *or* C–H bond activation

Tingting Zheng, Hongjian Sun, Jun Ding, Yanfeng Zhang, Xiaoyan Li*

School of Chemistry and Chemical Engineering, Shandong University, Shanda Nanlu 27, 250100 Jinan, PR China

ARTICLE INFO

Article history: Received 24 February 2010 Received in revised form 14 April 2010 Accepted 27 April 2010 Available online 2 June 2010

Keywords: Cobalt complexes C—F bond activation C—H bond activation Anchoring group

ABSTRACT

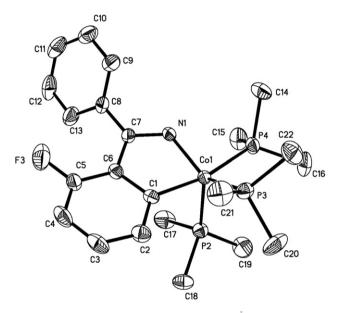
Treatment of CoMe(PMe₃)₄ with 2,6-difluorobenzophenone imine and 2,6-difluorobenzophenone resulted in C–H bond activation complex, $[Co(2-C_6H_4)-(C=NH)-(2',6''-F_2C_6H_3)(PMe_3)_3]$ (2), and C–F bond activation complex $[Co(Me)(F)(2-(6-FC_6H_3)-(C=O)-C_6H_5)(PMe_3)_2]$ (3) respectively. Using Co (PMe₃)₄ instead of CoMe(PMe₃)₄ the C–F activation Co(I) complex $[Co(2-(6-FC_6H_3)-(C=NH)-C_6H_5)(PMe_3)_3]$ (1), was obtained by the reaction of Co(PMe₃)₄ with 2,6-difluorobenzophenone imine. In the case of mono-fluorinated aromatic ketone, the reaction of CoMe(PMe₃)₄ with 2,4'-difluorobenzophenone afforded only C–H bond activation complex, $[Co(2-(4-FC_6H_3)-(C=O)-(2'-FC_6H_4)(PMe_3)_3]$ (4) in comparison with the C–F activation in the di-fluorinated aromatic ketone 2,6-difluorobenzophenone system. The crystal structures of complexes 1, 3 and 4 were determined by X-ray diffraction. The proposed mechanisms were discussed.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The intramolecular selective activation of C-F versus C-H bond has attracted a great deal of attention in recent years because of the requirements of "molecular surgery" in modern synthetic chemistry. The priority of selective activation of C-F versus C-H bond within one molecule is complicated and is related to many factors [1–16]. It has not only thermodynamic but also kinetic reason. A survey of competing C-F activation pathways in the reaction of Pt(0) with fluoropyridines by Perutz was investigated with both computational and experimental methods [17]. In 2008 Klein reported the first regioselective cyclometalation reactions of cobalt in arylketone [18]. It was found that CoMe(PMe₃)₄ activates ortho-(C-H) and ortho-(C-F) bonds of aromatic ketones and the ortho-(C-F) activation is preferred over the ortho-(C-H) activation in 2,3,4,5,6-pentafluorobenzophenone. Recently Johnson published a combined experimental and computational study of unexpected C-F bond activation intermediates and selectivity in the reaction of pentafluorobenzene with a (PEt₃)₂Ni synthon [19]. Goldman reported addition at the aryl meta- and para-positions is kinetically more favorable than at the ortho-position, although thermodynamics favor the chelated ortho-(C-H) addition for

three coordinate d⁸ metal complexes [20]. Hydrido osmium is capable of producing the triple C-H bond activation of the cyclohexyl group of cyclohexylmethyl ketone [21]. Esteruelas found that the ortho-(C-H) bond activation is preferred over the ortho-(C-F) bond activation in aromatic ketones with one aromatic ring by phosphine-supported hexahydride osmium complex [22]. Both C-F and C-H bond activations are favored by an increase of the degree of fluorination of the substrates [23]. We obtained the first organo cobalt(III) complex containing a [C-Co-F] fragment through a cyclometalation reaction involving C-F bond activation at a cobalt(I) center with an aldazine-N atom as an anchoring group [24]. In this paper we present competitive cleavage of C-F versus C-H bond in the cyclometalation reaction at electron-rich cobalt center with ketone and imine as anchoring group. Through the reaction of CoMe(PMe₃)₄ with 2,6-difluorobenzophenone, another example of organo cobalt(III) complex, $[Co(Me)(F)(2-(6-FC_6H_3)-(C=O)-C_6H_5)(PMe_3)_2]$ (3), containing a [C-Co-F] fragment was obtained.


2. Results

2.1. Reaction of Co(PMe₃)₄ with 2,6-difluorobenzophenone imine

Co(PMe₃)₄ was combined with 2,6-difluorobenzophenone imine affording the C–F bond activation complex **1** (eq. (1)).

^{*} Corresponding author. Tel.: +86 531 88361350; fax: +86 531 88564464. E-mail address: xli63@sdu.edu.cn (X. Li).

Complex **1** forms purple-blue crystals suitable for X-ray diffraction which decompose above 140 $^{\circ}$ C. In the IR spectra the characteristic $\nu(C=N)$ band was found at 1603 cm $^{-1}$. The resonance of the N–H proton in the 1 H NMR spectrum is registered at 8.36 ppm.

Fig. 1. Molecular structure of **1** and selected bond distances (Å) and angles (°): Co1-N1 1.885(3), Co1-P2 2.1904(13), Co1-P3 2.2002(12), Co1-P4 2.2159(13), C1-Co1 1.936(4), C7-N1 1.336(5); N1-Co1-C1 80.91(16), N1-Co1-P2 114.11(11), C1-Co1-P2 86.68(12), N1-Co1-P3 133.89(11), C1-Co1-P3 93.66(13), P2-Co1-P3 111.18(5), P2-Co1-P4 97.46(5), P3-Co1-P4 96.03(5), N1-Co1-P4 86.41(11), C1-Co1-P4 167.26(13), C7-N1-Co1 120.9(3), N1-C7-C6 110.9(4), C6-C1-Co1 113.8(3), C1-C6-C7 112.7(3).

The molecular structure of **1** (Fig. 1) shows a trigonal bipyramidal configuration around cobalt with C1 and P4 on axial direction. The bite angle N1-Co1-C1 80.91(16)° is smaller than that of complex **4**. The sum of internal bond angles of the chelate ring is (539.21°) . The distance of C7-N1 (1.336(5) Å) is close to that (1.337(8) Å) in the reported compound [25]. In comparison with the reaction of $Co(PMe_3)_4$ with 2,6-difluorobenzophenone [26], the imine group is a better anchoring group than the keto group. The C-F bond could be activated by the compensation of chelate effect.

In the proposed mechanism (Scheme 1) the π -coordination of C=N double bond to the cobalt(0) center is the first step, which makes closing of cobalt center to the *ortho*-(C-F) bond and the formation of the intermediate **A** possible. Oxidative addition between the C-F bond and the cobalt(0) center delivered cobalt(II) intermediate **B**. **B** was reduced to cobalt(I) product **1**.

In our early work [27], the formation of F_2PMe_3 in the reaction of perfluorotoluene with $Co(PMe_3)_4$ was confirmed via ^{31}P NMR spectroscopy. The fate of the fluorine atom in reaction (1) is not experimentally identifiable.

2.2. Reaction of CoMe(PMe₃)₄ with 2,6-difluorobenzophenone imine

Instead of cobalt(0) complex Co(PMe₃)₄, cobalt(I) complex CoMe (PMe₃)₄ was combined with 2,6-difluorobenzophenone imine affording deep-green crystals of complex **2** through C–H bond activation (eq. (2)).

$$+ CoMe(PMe_3)_4 - CH_4 - PMe_3$$

$$+ PMe_3$$

$$+ CoMe(PMe_3)_4 - PMe_3$$

In the IR spectra v(C=N) absorption was found at 1620 cm⁻¹. The signal of the (NH) group is registered at 8.33 ppm. In the ³¹P NMR spectra there are three signals for PMe₃ ligands at 43.9, 33.5

Scheme 1. Proposed mechanism for reaction (1).

Download English Version:

https://daneshyari.com/en/article/1325724

Download Persian Version:

https://daneshyari.com/article/1325724

<u>Daneshyari.com</u>