Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Note SPh functionalized bridging-vinyliminium diiron and diruthenium complexes

Luigi Busetto^a, Fabio Marchetti^b, Rita Mazzoni^a, Mauro Salmi^a, Stefano Zacchini^a, Valerio Zanotti^{a,*}

^a Dipartimento di Chimica Fisica e Inorganica, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy ^b Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, I-56126 Pisa, Italy

ARTICLE INFO

Article history: Received 23 June 2008 Received in revised form 14 July 2008 Accepted 14 July 2008 Available online 19 July 2008

Keywords: Vinyliminium Zwitterionic complexes Disulfides Diiron complexes

ABSTRACT

The SPh functionalized vinyliminium complexes $[Fe_2\{\mu-\eta^1:\eta^3-C_\gamma(R')=C_\beta(SPh)C_\alpha=N(Me)(R)\}(\mu-CO)(CO)(Cp)_2][SO_3CF_3]$ [R = Xyl, R' = Me, **2a**; R = Me, R' = Me, **2b**; R = 4-C₆H₄OMe, R' = Me, **2c**; R = Xyl, R' = CH₂OH, **2d**; R = Me, R' = CH₂OH, **2e**; Xyl = 2,6-Me₂C₆H₃] are generated in high yields by treatment of the corresponding vinyliminium complexes $[Fe_2\{\mu-\eta^1:\eta^3-C_\gamma(R')=C_\beta(H)C_\alpha=N(Me)(R)\}(\mu-CO)(CO)(Cp)_2][SO_3CF_3]$ (**1a**-**e**) with NaH in the presence of PhSSPh. Likewise, the diruthenium complexe $[Ru_2\{\mu-\eta^1:\eta^3-C_\gamma(Me)=C_\beta(SPh)C_\alpha=N(Me)(Xyl)\}(\mu-CO)(CO)(Cp)_2][SO_3CF_3]$ (**2f**) was obtained from the corresponding vinyliminium complex $[Ru_2\{\mu-\eta^1:\eta^3-C_\gamma(Me)=C_\beta(H)C_\alpha=N(Me)(Xyl)\}(\mu-CO)(CO)(Cp)_2]$ (**1f**). The synthesis of **2c** is accompanied by the formation, in comparable amounts, of the aminocarbyne complex $[Fe_2\{\mu-CN(Me)(4-C_6H_4OMe)\}(SPh)(\mu-CO)(CO)(Cp)_2]$ (**3**).

The molecular structures of **2d**, **2e** and **3** have been determined by X-ray diffraction studies. © 2008 Published by Elsevier B.V.

1. Introduction

Bridging vinyliminium complexes **1** [1] (Scheme 1) exhibit a remarkable reactivity, which results from the combination of two distinct features: the presence of an iminium group and the bridging coordination of the organic frame. Indeed, both iminium activation [2] and transformation of multiside bound organic frames [3] represent topics of current interest, for their effectiveness in providing new reactions and improved synthetic strategies. We exploited these activation effects to transform bridging vinyliminium ligands into new multifunctional coordinated species through new and unconventional reaction routes. These include proton removal from the C_{β} -H in the presence of 'trapping' reagents, such as diazocompounds or group 16 elements. The reactions led to the formation of diazine-bis alkylidenes I [4], and zwitterionic complexes II [5], respectively (Scheme 1).

Herein we report an extension of these studies, aimed at investigating the deprotonation of vinyliminium complexes in the presence of PhSSPh.

In order to study the influence that the substituents R and R' exert on the reactivity of the complexes **1**, a number of different vinyliminium complexes have been investigated. Moreover, the study includes a diruthenium vinyliminium complex, in order to evidence possible effects due to the nature of the metal atom.

* Corresponding author. Tel.: +39 0512093695. E-mail address: valerio.zanotti@unibo.it (V. Zanotti).

2. Results and discussion

The vinyliminium complexes 1a-f react with NaH, in THF at room temperature, in the presence of PhSSPh, affording the corresponding phenylthiolate derivatives 2a-f in about 70–80% yields (Scheme 2).

Complexes **2a**–**f**, were purified by alumina chromatography and characterized by spectroscopy and elemental analysis. Moreover, the molecular structures of 2d and 2e have been ascertained by X-ray diffraction studies: the ORTEP molecular diagrams are shown in Figs. 1 and 2, whereas the most relevant bond distances and angles are reported in Table 1, where they are compared with a typical C_B substituted vinyliminium complex, i.e. *cis*-[Fe₂{ μ - η^1 : η^3 - $C_{\gamma}(Me) = C_{\beta}(Me)C_{\alpha} = N(Me)(Xyl) (\mu - CO)(CO)(Cp)_2 [SO_3CF_3]$ (III)[1b]. A hydrogen bond exists in both structures between the C_{γ} -CH₂OH hydroxo group and one oxygen atom of the [CF₃SO₃]⁻ anion [O(1)···O(10)#1 2.833(10) Å, O(1) - H(100)0.832(11) Å, H(100)...O(10)#1 2.07(5) Å, O(1)-H(100)-O(10)#1 153(11)° for 2d: $O(1) \cdots O(10) \# 1$ 2.861(13) Å. O(1) - H(1A)0.81(2) Å. H(1A)...O(10)#1 2.07(3) Å, O(1)-H(1A)-O(10)#1164(8)° and O(1)...O(30')#1 2.681(16) Å, O(1) - H(1A)0.81(2) Å, H(1A)...O(30')#1 2.01(6) Å, O(1)-H(1A)-O(30')#1 140(8)° for 2e]. As it can be evinced from Table 1, the bonding parameters for both 2d and 2e are in perfect agreement with those previously reported for other vinyliminium complexes bearing a substituent on C_{β} , [1b,5,6] confirming the usual μ - η^1 : η^3 -coordination to the diiron frame of the unsaturated C_3 unit. In particular the Fe(2)–C(15) [1.868(12) and 1.841(5) Å for 2d and 2e, respectively] and C(15)-N(1) [1.279(11) and 1.287(7)Å for **2d** and **2e**, respectively]

i: NaH, N₂CH(COOEt); ii: NaH, E (E = O, S, Se).

Scheme 1. Ancillary μ -CO and Cp ligands in I and II have been omitted for clarity.

Fig. 1. Molecular structure of $[Fe_2[\mu-\eta^1:\eta^3-C_{\gamma}(CH_2OH)=C_{\beta}(SPh)-C_{\alpha}=N(Me)(Xyl)](\mu-CO)(CO)(Cp)_2][SO_3CF_3] ($ **2d**), with key atoms labeled (all H-atoms, except H(100), have been omitted for clarity). Thermal ellipsoids are at the 30% probability level.

interactions display some π -charater in agreement with the partial aminocarbene nature of the ligand. Moreover, in keeping with previous findings, the *N*-substituents in **2d** adopt the *Z*-configuration in order to avoid steric repulsion with the –SPh group.

Fig. 2. Molecular structure of $[Fe_2\{\mu - \eta^1:\eta^3-C_{\gamma}(CH_2OH)=C_{\beta}(SPh)C_{\alpha}=N(Me)_2\}(\mu-CO)(CO)(Cp)_2][SO_3CF_3]$ (**2e**) with key atoms labeled (all H-atoms, except H(1a), have been omitted for clarity). Thermal ellipsoids are at the 30% probability level.

 Table 1

 Selected bond lengths (Å) and angles (°) for 2d and 2e

	2d	2e	III
Fe(1)-Fe(2)	2.558(2)	2.5460(11)	2.562(1)
Fe(1)-C(11)	1.742(12)	1.763(7)	1.750(9)
Fe(1)-C(12)	1.877(11)	1.891(6)	1.894(8)
Fe(2)–C(12)	1.961(11)	1.965(6)	1.944(8)
Fe(1)-C(13)	1.944(10)	1.959(5)	1.955(7)
Fe(2)–C(13)	2.051(10)	2.032(5)	2.035(7)
Fe(2)–C(14)	2.044(10)	2.034(5)	2.080(7)
Fe(2)-C(15)	1.868(12)	1.841(5)	1.839(7)
C(11)-O(11)	1.144(11)	1.134(8)	1.150(9)
C(12)-O(12)	1.195(10)	1.164(7)	1.181(9)
C(13)-C(14)	1.447(12)	1.428(8)	1.39(1)
C(14)-C(15)	1.454(13)	1.433(7)	1.43(1)
C(13)-C(25)	1.511(12)	1.509(7)	
C(25)-O(1)	1.399(10)	1.413(8)	
C(14) - S(1)	1.795(10)	1.800(5)	
C(15)-N(1)	1.279(11)	1.287(7)	1.314(8)
N(1)-C(16)	1.479(11)	1.450(8)	1.478(9)
N(1)-C(17)	1.452(12)	1.472(8)	1.454(8)
C(14)–C(13)–Fe(1)	119.0(8)	119.0(4)	121.8(5)
C(13)-C(14)-C(15)	117.4(10)	116.2(5)	155.5(6)
N(1)-C(15)-C(14)	133.4(10)	133.7(5)	131.3(7)
O(1)-C(25)-C(13)	107.5(8)	107.4(5)	
Sum angles at N(1)	359.3(16)	359.9(9)	360.0(9)

The most relevant bonding parameters of the C_{β} substituted vinyliminium complex cis-[Fe₂{ μ - η^1 : η^3 - $C_{\gamma}(Me)$ = $C_{\beta}(Me)C_{\alpha}$ =N(Me)(XyI)](μ -CO)(CO)(Cp)₂][SO₃CF₃] (III) [1b] are reported as well for sake of comparison.

The overall result of the reaction shown in Scheme 1 consists in the replacement of the C_{β} -H hydrogen with the SPh group. It should be noted that an alternative route to the introduction of a thiolate functionality in the bridging ligand is provided by two distinct reaction steps: (a) generation of the zwitterionic species **II**; (b) alkylation of the S atom (Scheme 3) [6].

Compared to the latter procedure, the reaction with PhSSPh has the advantage of being a direct, single step synthesis.

Concerning the spectroscopic properties of 2a-f, these are consistent with the structures found in solid and very similar to those of the complexes of type IV, recently reported [6]. In particular, the IR spectra of 2a-f show the usual v-CO band pattern consisting of

Download English Version:

https://daneshyari.com/en/article/1325750

Download Persian Version:

https://daneshyari.com/article/1325750

Daneshyari.com