

Available online at www.sciencedirect.com

Journal of Organometallic Chemistry 691 (2006) 3646-3651

www.elsevier.com/locate/jorganchem

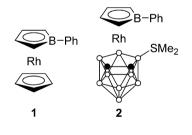
The first metallacarborane triple-decker complexes with a bridging borole ligand

Dmitry A. Loginov, Dmitry V. Muratov, Zoya A. Starikova, Pavel V. Petrovskii, Alexander R. Kudinov *

A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119991 Moscow GSP-1, Russian Federation

Received 9 February 2006; received in revised form 3 May 2006; accepted 11 May 2006 Available online 20 May 2006

Abstract

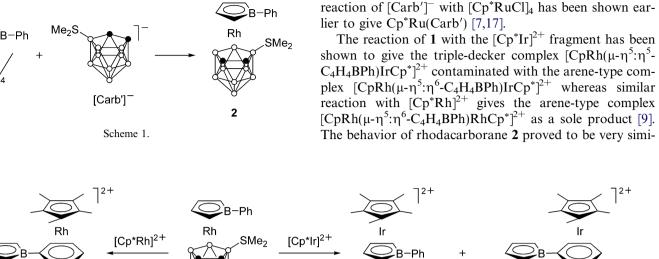

The (borole)iodide complex $[(\eta^5-C_4H_4BPh)Rh]_4$ reacts with the carborane anion $[Carb']^-$ (Carb' = 9-SMe₂-7,8-C₂B₉H₁₀) giving (Carb')Rh($\eta^5-C_4H_4BPh$) (2). Reactions of 2 with dicationic fragments $[LM]^{2+}$ afford the μ -borole triple-decker complexes $[(Carb')Rh(\mu-\eta^5:\eta^5-C_4H_4BPh)ML]^{2+}$ $[LM = Cp^*Ir$ (4), (Carb')Rh (7)] or the arene-type complexes $[(Carb')Rh(\mu-\eta^5:\eta^6-C_4H_4-BPh)ML]^{2+}$ $[LM = Cp^*Rh$ (3), (Carb')Ir (8)]. The structure of 4(BF₄)₂ was determined by X-ray diffraction. © 2006 Elsevier B.V. All rights reserved.

Keywords: Boron; Boron heterocycles; Metallacarboranes; Iridium; Rhodium; Triple-decker complexes

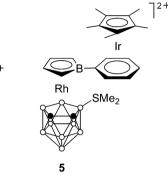
1. Introduction

Metallacarborane triple-decker complexes are still rare. Siebert et al. have prepared compounds with a bridging diborole ligand [1–6]. We have described previously two μ -cyclopentadienyl nikelacarborane complexes [7,8].

Recently, we have shown that the reactions of the Bphenylborole complex $CpRh(\eta^5-C_4H_4BPh)$ (1) with dicationic fragments $[(ring)M]^{2+}$ afford either triple-decker or arene-type complexes $[CpRh(\mu-\eta^5:\eta^5-C_4H_4BPh)M(ring)]^{2+}$ and $[CpRh(\mu-\eta^5:\eta^6-C_4H_4BPh)M(ring)]^{2+}$ [9]. The monoanionic carborane ligand $[Carb']^-$ (Carb' = 9-SMe₂-7,8- $C_2B_9H_{10}$) is analogous with Cp^- in coordinating ability [10-13]. It allows to assume that the (borole)rhodacarborane complex (Carb')Rh($\eta^5-C_4H_4BPh$) (2) should react with $[(ring)M]^{2+}$ fragments similar to 1. Herein we report the use of such reactions for the synthesis of the first metallacarborane triple-decker complexes with a bridging borole ligand.


2. Results and discussion

2.1. Synthesis


Herberich et al. [14–16] have shown that the (borole)iodide complex $[(\eta^5-C_4H_4BPh)RhI]_4$ is a useful synthon of the $(\eta^5-C_4H_4BPh)Rh$ species. In particular, it reacts with silver salts in acetonitrile giving cation $[(\eta^5-C_4H_4BPh)Rh(MeCN)_3]^+$ [16]. The latter reacts with mesitylene and hexamethylbenzene giving the arene complexes $[(\eta^5-C_4H_4BPh)Rh(\eta^6-arene)]^+$. We found that the reaction of $[(\eta^5-C_4H_4BPh)Rh(\eta^6)]_4$ with the carborane anion $[Carb']^$ yields the rhodacarborane complex **2** (Scheme 1). Similar

^{*} Corresponding author. Tel.: +7 495 135 9367; fax: +7 495 135 5085. *E-mail address:* arkudinov@ineos.ac.ru (A.R. Kudinov).

⁰⁰²²⁻³²⁸X/\$ - see front matter @ 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2006.05.014

2

Rh

SMe₂

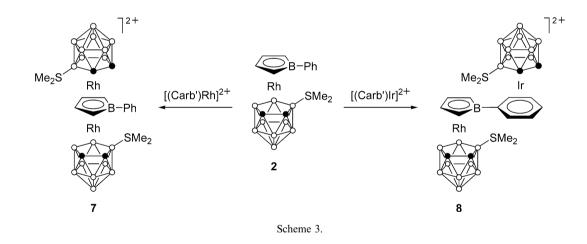


Table 1 ¹H NMR spectroscopic data for complexes 2–5, 7 and 8 in nitromethane- d_3^{a}

Complex	α -H ^b	β-H ^b	SMe ₂ ^c	CH-cage ^d	Cp*c	Ph ^b
2	4.82, 4.75	5.70, 5.64	2.39, 2.37	4.08, 3.41		7.74 (o-H), 7.27 (m-H), 7.22 (p-H)
3	5.14, 5.06	5.94, 5.90	2.52	4.47, 3.74	2.22	7.49 (o-H), 7.28 (m-H, p-H)
4	5.58, 5.48	6.54, 6.43	2.72, 2.45	5.72, 5.15	1.95	7.79 (o-H), 7.55 (m-H), 7.43 (p-H)
5 ^e	_f	_f	_f	_f	2.34	_f
7	6.19 (0.5H),	7.04 (0.5H),	2.77 (6H),	5.77, 5.22		7.98 (o-H), 7.55 (m-H), 7.45 (p-H)
	6.06 (1H),	6.95 (1H),	2.55 (3H),			
	6.01 (0.5H)	6.90 (0.5H)	z2.50 (3H)			
8	5.16, 5.11	5.82, 5.80	2.85 (3H), 2.83 (3H), 2.56 (6H)	6.15, 5.49, 4.86, 4.14		7.97 (o-H), 7.82 (m- H), 7.75 (p-H)

^a Chemical shifts in ppm.

^b Multiplets.

Rh

SMe₂

3

^c Singlets.

^d Broad singlets.

^e Detected in a mixture with complex 4.

^f Difficult to measure owing to overlap with signals of 4.

Download English Version:

https://daneshyari.com/en/article/1325781

Download Persian Version:

https://daneshyari.com/article/1325781

Daneshyari.com