

Available online at www.sciencedirect.com

Journal of Organometallic Chemistry 693 (2008) 1309-1320

www.elsevier.com/locate/jorganchem

Synthesis, structure and dynamic stereochemistry of $(O \rightarrow Si)$ -chelate N-(trifluorosilylmethyl)-[N-(S)-(1-phenylethyl)]acetamide and 1-(trifluorosilylmethyl)-2-oxoperhydroazepine: Retention of the O \rightarrow Si coordination in the adduct with KF and 18-crown-6

Vadim V. Negrebetsky^{a,*}, Peter G. Taylor^b, Evgeniya P. Kramarova^a, Aleksander G. Shipov^a, Sergey A. Pogozhikh^c, Yuri E. Ovchinnikov^c, Alexander A. Korlyukov^d, Allen Bowden^b, Alan R. Bassindale^b, Yuri I. Baukov^a

^a Russian State Medical University, Ostrovityanov St. 1, Moscow 117997, Russia

^b Department of Chemistry, Open University, Walton Hall, Milton Keynes MK7 6AA, UK

^cA. N. Nesmeyanov Institute of Organoelement Compounds, Vavilov St. 28, 119991 Moscow, Russia

^d Novosibirsk State Pedagogical University, Vilyuiskaya St. 28, Novosibirsk 630126, Russia

Received 7 December 2007; accepted 18 January 2008 Available online 26 January 2008

Abstract

The novel compounds, *N*-(trifluorosilylmethyl)-[*N*-(*S*)-(1-phenylethyl)]-acetamide (**1a**) and 1-(trifluorosilylmethyl)-2-oxoperhydroazepine (**1b**) have been prepared from the corresponding NH-compounds using ClCH₂SiCl₃/Et₃N or ClCH₂SiCl₃/(Me₃Si)₂NH followed by methanolysis or hydrolysis of the reaction mixture in the presence of Lewis bases, and then BF₃ etherate. Potassium-(18-crown-6)-(2-oxoperhydroazepinomethyl)tetrafluorosilicate (**2**) was synthesized by reaction of the trifluoride (**1b**) with KF in the presence of 18-crown-6. Using ¹⁹F, ²⁹Si NMR and X-ray diffraction techniques it was established that the silicon atom is pentacoordinate in the trifluorides (**1a**,**b**) and hexacoordinate in the adduct **2**. Thus the internal coordination of the O \rightarrow Si bond present in the trifluoride (**1b**) is retained in the adduct **2**.

The stereochemical non-rigidity of the trifluorides (1a, b) and the *N*-(trifluorosilylmethyl)-*N*-methylacetamide (1c) was investigated using dynamic ¹⁹F NMR spectroscopy. The activation barriers for permutational isomerization are in the range 9.5–10 kcal mol⁻¹. Lower values of $\Delta G^{\#}$ for permutation of trifluorides (1a–c) compared to the monofluorides with the coordination core OSiC₃F together with small negative values for the activation entropy implies a non-dissociative mechanism. Quantum-chemical analysis suggests a mechanism involving a turnstile rotation.

© 2008 Elsevier B.V. All rights reserved.

Keywords: Pentacoordination; Hexacoordination; X-ray diffraction study; Stereochemical non-rigidity; Dynamic NMR; Quantum-chemical calculations

1. Introduction

In recent years, the structural properties and reactivity of hypercoordinated compounds, in particular penta- and

* Corresponding author. Tel.: +7 495 434 04 65.

hexacoordinated chelate compounds of silicon, have been the subject of intensive investigations [1]. Synthetic methodologies have been developed that allow the synthesis of a range of *N*-silylmethyl derivatives of amides and lactams containing one and occasionally two or three electronaccepting substituents at silicon [2,3]. The distinctive properties of their spatial arrangement and ($O \rightarrow Si$)-chelation

E-mail address: negrebetsky@rsmu.ru (V.V. Negrebetsky).

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2008.01.033

[3c,4], stereochemical non-rigidity about the trigonal-bipyramidal environment of silicon [5] and their reactions such as nucleophilic substitution at silicon [3a,6] have all been investigated.

Damrauer and Danahey [7] and others [1b] have reported that organic fluorosilanes yield stable nonhygroscopic complexes $[K^+ \cdot 18$ -crown-6] $[R_n \text{SiF}_{5-n}]^-$ (n = 1-3), upon treatment with KF in the presence of crown-ethers. Similarly $(N \rightarrow \text{Si})$ -chelated trifluorosilanes produce the corresponding anion complexes which retain the $(N \rightarrow$ Si)-chelate structure, the coordination number of silicon increasing up to 6 [8].

As far as we are aware, there are no literature data concerning the interaction of $(O \rightarrow Si)$ -chelate trifluorosilanes with KF in the presence of crown-ethers. In the 8-dimethylamino-1-silatranylnaphthalene the N \rightarrow Si coordination bond is present, although fairly weak [9], whereas in the 1-[1-(2-oxoperhydroazepino)ethyl]silatrane [10] $(O \rightarrow Si)$ -chelation is absent. Such chelation is absent in the anions of 1,10-phenanthroline (benzoyloxymethyl) tetrafluorosilicate [11a] and ammonium (4-fluorobenzoyloxymethyl) pentafluorosilicate [11b] where the silicon atoms, according to X-ray data, are penta- and hexacoordinated, respectively. At the same time in the case of the tetrafluorosilicate [K⁺ · 18-crown-6][RSiF₄]⁻ bearing a 2-(phenylazo)phenyl group (R = PhN=NC₆H₄) the reverstigations and quantum-chemical calculations, the stereodynamical behavior of the above compounds and the N-(trifluorosilylmethyl)-N-methylacetamide (1c) are discussed.

2. Results and discussion

2.1. Synthesis and structure

For the synthesis of the trifluorides (1a, b) we used the one-pot procedure developed earlier [12]. Thus, treatment of N-(S)-(1-phenylethyl)acetamide or ε -caprolactam with (Me₃Si)₂NH/ClCH₂SiCl₃, followed by hydrolysis of the reaction mixture with NaHCO₃ and heating of the organic residue in the presence of $BF_3 \cdot Et_2O$ gave the trifluorides (1a, b) in yields of 4% and 26%, respectively (Reaction 1a). It was possible to increase the yield of 1b to 60% by the use of triethylamine as a base and further treatment of the reaction mixture with methanol instead water in the presence of triethylamine. This resulted in the formation of the intermediate 1-(trimethoxysilylmethyl)-2oxoperhydroazepine [13], whose further reaction with $BF_3 \cdot Et_2O$, in the reaction mixture, gave the final product (1b, (Reaction 1b)). A similar approach taken with N-(S)-(1-phenylethyl)acetamide, using hexamethyldisilazane as the base, resulted in the trifluoride (1a) in a yield of 55%.

1a, R = Me, R' = CH(Ph)Me; **1b**, $R,R' = (CH_2)_5$

(1)

ible photoswitching of the coordination number of silicon was observed, i.e. six for the (*E*)-isomer which has $N \rightarrow Si$ coordination and five for the (*Z*)-isomer which has no coordination [8b].

This paper describes the synthesis and $(O \rightarrow Si)$ -chelate structure of the novel compounds *N*-(trifluorosilylmethyl)-[*N*-(*S*)-(1-phenylethyl)]acetamide (1a) and 1-(trifluorosilylmethyl)-2-oxoperhydroazepine (1b). It describes the expansion of the silicon coordination environment upon reaction of the trifluoride (1b) with KF in the presence of 18-crown-6 resulting in adduct (2) with retention of (O \rightarrow Si)-chelation. Based on dynamic ¹⁹F NMR invesThe trifluoride (1c; R = R' = Me) has been synthesized previously by reaction of the triethoxyderivative MeC(O)-N(Me)CH₂Si(OEt)₃ with BF₃ etherate in a yield of 61% [14]. In the work described here, this compound was obtained in a yield of 92% using the trimethoxy derivative MeC(O)N(Me)CH₂Si(OMe)₃ [13].

Complex 2 was obtained by treating the trifluoride (1b) with potassium fluoride in the presence of 18crown-6 (Reaction 2). The X-ray diffraction data (see below) and elemental analysis suggest the complex was isolated in the form of a monosolvate with toluene, $2 \cdot PhMe$. Download English Version:

https://daneshyari.com/en/article/1325911

Download Persian Version:

https://daneshyari.com/article/1325911

Daneshyari.com