

Available online at www.sciencedirect.com

Journal of Organometallic Chemistry 690 (2005) 5662-5671

Journal ofOrgano metallic Chemistry

www.elsevier.com/locate/jorganchem

Rhodium complexes of $PC^{NHC}P$: Oxidative addition of dichloromethane and catalytic hydrosilylation of alkynes affording (*E*)-alkenylsilanes

Jing Yao Zeng, Meng-Hua Hsieh, Hon Man Lee *

Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan

Received 30 May 2005; accepted 4 July 2005 Available online 10 August 2005

Abstract

New rhodium complexes of PC^{NHC}P have been synthesized by using the silver transfer reagent, $[Ag_3(PC^{NHC}P)_2Cl]Cl_2(2)$. In the reaction between **2** and $[Rh(COD)Cl]_2$ in dichloromethane, the presumably formed nucleophilic $Rh^1(PC^{NHC}P)Cl$ intermediate (A), undergoes a C–Cl bond activation of CH₂Cl₂ giving *cis,mer*-Rh^{III}(PC^{NHC}P)(CH₂Cl)Cl₂ (**3**) as the final product. Attempts to isolate **A** affords the oxidative degradation product of *mer*-Rh^{III}(PC^{NHC}P)Cl₃ complex (**4**). In contrast, the rhodium(I) center in Rh(PC^{NHC}P)(CO)Cl (**5**) is stabilized by the π -back bonding of C=O ligand; a robust complex is, therefore, obtained. The solid-state structures of **2** and **3** were determined by X-ray diffraction. Complexes **3–5** are catalyst precursors for efficient, chemoselective hydrosilylation of alkynes. For the reaction between phenylacetylene and dimethylphenylsilane, a rapid hydrosilylation occurs, producing isomers of alkenylsilanes; then a slow isomerization pathway converts (*Z*)-alkenylsilane to its (*E*)-isomer. For **3**, under catalytic condition, a facile reductive elimination of dichloromethane giving **A** is anticipated. The similarity in reactivity and selectivity between **3**, **4** and **5** suggests the involvement of **A** as the active species in a common catalytic cycle.

Keywords: Rhodium complex; N-heterocyclic carbene; Phosphine; Hybrid ligand; Hydrosilylation; X-ray structural determination

1. Introduction

N-heterocyclic carbenes (NHCs) have attracted much attention because their transition metal complexes display rich coordination chemistry and have wide applicability in catalysis [1]. While monodentate NHC ligands have been shown to be highly active in various catalytic reactions [1c,1d,1e,1f], research efforts have also been devoted to the synthesis of hybrid ligands containing NHC and classical donors, such as nitrogen and phosphorus. Some of these show interesting coordination chemistry [2–5], efficient catalytic applications [6–8], and biological activities [9]. Currently, our laboratory

E-mail address: leehm@cc.ncue.edu.tw (H.M. Lee).

is also interested in preparing and exploring the potential utilities of new hybrid ligands of NHC [10]. For example, we have synthesized the phosphine-functionalized NHC ligand, $PC^{NHC}P$ (1) [10a]. We found that, while palladium complexes of $PC^{NHC}P$ is efficient Heck catalysts [10a], the binuclear ruthenium complex, *fac*- $[Ru_2(\mu-Cl)_3(PC^{NHC}P)_2]Cl$, is active in catalytic transfer hydrogenation [10f]. The reactivity study also shows that the $PC^{NHC}P$ ligand is capable of accommodating extra steric requirement by switching readily from facial to meridional chelating mode [10f].

In this paper, continuing on our interest in $PC^{NHC}P$, we report on its new rhodium complexes. We followed our previous established procedure of using the trinuclear silver NHC complex, $[Ag_3(\mu-Cl)-(PC^{NHC}P)_2]Cl_2$ (2), as the $PC^{NHC}P$ transfer reagent [10f]. We found that a reaction between 2 and

^{*} Corresponding author. Tel.: +886 4 7232105x3523; fax: +886 4 7211190.

⁰⁰²²⁻³²⁸X/\$ - see front matter @ 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2005.07.025

[Rh(COD)Cl]₂ in dichloromethane produced cleanly the intriguing rhodium(III) complex, *cis,mer*-Rh^{III}-(PC^{NHC}P)(CH₂Cl)Cl₂ (3), formed by a dichloromethane molecule oxidatively added to the reactive rhodium(I) intermediate, Rh^I(PC^{NHC}P)Cl (A). Oxidative addition of small molecules to reactive metal complexes is an important step for the activation of substrates in homogeneous catalysis. Because of the relatively inert C-Cl bond, the activation of dichloromethane requires electron-rich rhodium centers. Rhodium complexes of phosphine [11] and nitrogen ligands [12] and hybrid ligands containing both Pand N-donors [13] are able to mediate the oxidative addition of dichloromethane and in several cases the crystal structures of Rh^{III}(CH₂Cl)Cl were obtained [11b,12b,12c,12d,13b]. Although rhodium complexes of NHC are numerous [1e,1g], 3 represents the first reported case of an oxidative addition of dichloromethane to a rhodium(I) complex containing a NHC moiety. We have also prepared the rhodium(III) trichloride complex, *mer*-Rh^{III}($PC^{NHC}P$)Cl₃ (4) and the rhodium(I) complex, mer-Rh^I(PC^{NHC}P)(CO)Cl (5). All the new metal complexes 3-5 are efficient catalyst precursors in hydrosilylation of alkynes affording (E)vinylsilanes as the major product.

2. Experimental section

2.1. General procedure

All reactions were performed under a dry nitrogen atmosphere using a Schlenk line and standard Schlenk technique. All solvents used were purified according to standard procedures [14]. ¹H, ¹³C{¹H}, and ³¹P{¹H} NMR spectra were recorded at 300.13, 75.48, and 121.49 Hz, respectively, on a Bruker AV-300 spectrometer. Chemical shifts for ¹H and ¹³C spectra were in ppm relative to residual proton of CDCl₃ (¹H: δ 7.24; ¹³C: δ 77.0) or DMSO- d_6 (¹H: δ 2.50; ¹³C: δ 39.5). ³¹P NMR chemical shifts were relative to 85% H₃PO₄ external standard (³¹P: δ 0.0). Infrared spectra were recorded with a Digilab Scimitar FTS 2000 spectrometer. GC/MS analyses were performed on a HP 6890 Series GC system with a HP 5973 mass selective detector, equipped with a HP-5MS capillary column (length: 30 mm, ID: 0.25 mm, film thickness: 0.25 µm). Elemental analyses were performed on a Heraeus CHN-OS Rapid Elemental Analyzer at the Instrument Center, National Chung Hsing University, Taiwan. [Rh(COD)Cl]₂ and [Rh- $(CO)_2Cl_2$ are purchased from commercial source.

2.2. Preparation of cis- $Rh(PC^{NHC}P)(CH_2Cl)Cl_2(3)$

A 10 mL dichloromethane solution of $[Ag_3(\mu\text{-Cl})\text{-}(PC^{\rm NHC}P)_2]Cl_2~(0.11~g,~0.078~mmol)$ and $[Rh(COD)Cl]_2$

(0.043 g, 0.087 mmol) was stirred at room temperature for 1 h. A grey solid of AgCl was slowly formed, which was filtered off through a plug of Celite. The solvent of the filtrate was removed completely under vacuum. Upon addition of diethyl ether, a greenish-yellow solid was formed which was filtered on a frit and dried under vacuum. Yield: 0.10 g (89%). Anal. Calc. for C₃₂H₃₂-N₂P₂Cl₃Rh: C, 53.69; H, 4.51; N, 3.91. Found: C, 53.60; H, 4.49; N, 3.85, m.p.: 245–249 °C. ¹H NMR (CDCl₃): δ 2.69–2.77 (m, 2H, PCHH), 2.96–3.04 (m, 2H, PCH*H*), 3.61 (td, ${}^{3}J_{HP} = 8.1 \text{ Hz}$, ${}^{2}J_{RhH} = 2.8 \text{ Hz}$, 2H, CH₂Cl), 4.34 (pentet, ${}^{2}J_{HH} = {}^{3}J_{HH} = {}^{3}J_{HP} =$ 11.6 Hz, 2H, NCHH), 4.78 (pentet, ${}^{2}J_{HH} = {}^{3}J_{HH} =$ ${}^{3}J_{\text{HP}} = 11.6 \text{ Hz}, 2\text{H}, \text{NCH}H), 6.85 (s, 2\text{H}, \text{imi-}H),$ 7.31-7.60 (m, 14H, Ph-H and imi-H), 7.86-7.90 (m, 3H, Ph-H), 8.33–8.36 (m, 3H, Ph-H). ¹³C{¹H} NMR (CDCl₃): δ 23.9 (t, $J_{CP} = 13.5$ Hz, PCH₂), 46.3 (s, NCH₂), 121.3 (imi-C), 127.9 (dt, ${}^{2}J_{RhC} = 24.1$, $J_{CP} = 5.2$ Hz, P–C), 130.0 (d, ${}^{2}J_{CP} = 15.0$ Hz, C_{ortho}), 132.7 (t, $J_{CP} = 4.1$ Hz, C_{para}), 135.7 (t, $J_{CP} = 5.4$ Hz, C_{meta}), signals for the Rh-CH₂Cl and Rh-carbene were not observed. ³¹P{¹H} NMR (CDCl₃): δ 6.4 (d, ${}^{1}J_{\rm RhP} = 103.3$ Hz).

2.3. Preparation of $Rh(PC^{NHC}P)Cl_3$ (4)

A 10 mL DMF solution of [Ag₃(µ-Cl)(PC^{NHC}P)₂]Cl₂ (0.13 g, 0.091 mmol) and [Rh(COD)Cl]₂ (0.050 g, 0.10 mmol) was heated at 60 °C overnight. A dark brown solid of AgCl and Ag⁰ was slowly formed, which was filtered off through a plug of Celite. The solvent of the filtrate was removed completely under vacuum. Upon addition of diethyl ether, a yellow solid was formed which was filtered on a frit and dried under vacuum. Yield: 90 mg (70%). Anal. Calc for $C_{31}H_{30}N_2$ -P₂Cl₃Rh: C, 53.05; H, 4.31; N, 3.99. Found: C, 53.15; H, 4.21; N, 3.95, m.p.: >290 °C. ¹H NMR (CDCl₃): δ 2.90 (br, 4H, PCH₂), 4.58 (br q, ${}^{3}J_{HH} = {}^{3}J_{HP} = 11.2$ Hz, 4H, NCH₂), 7.29-7.52 (m, 12H, Ph-H), 7.59 (s, 2H, imi-H), 7.95–8.09 (m, 8H, Ph-H). ¹³C{¹H} NMR (DMSO d_6): δ 24.5 (t, $J_{CP} = 13.5 \text{ Hz}$, PCH₂), 45.2 (NCH₂), 123.7 (imi-C), 127.6 (t, $J_{CP} = 4.8$ Hz, C_{ortho}), 130.1 (s, C_{para}), 131.8 (t, $J_{\text{CP}} = 25.1 \text{ Hz}$, P–C), 134.8 (t, ${}^{3}J_{\text{CP}} =$ 4.6 Hz, C_{meta}), signal for the Rh-C was not observed. ³¹P{¹H} NMR (CDCl₃): δ 1.7 (d, ¹J_{RhP} = 89.1 Hz).

2.4. Preparation of $Rh(PC^{NHC}P)(CO)Cl(5)$

A 10 mL DMF solution of $[Ag_3(\mu-Cl)(PC^{NHC}P)_2]$ -Cl₂ (0.15 g, 0.10 mmol) and $[Rh(CO)_2Cl]_2$ (0.040 g, 0.10 mmol) was stirred at room temperature for 2 h. A grey solid of AgCl was formed slowly, which was filtered off through a plug of Celite. The solvent of the filtrate was removed under vacuum. Upon addition of diethyl ether, a dark yellow solid was formed which was filtered on a frit and dried under vacuum. Yield: 0.11 g (77%). Download English Version:

https://daneshyari.com/en/article/1326081

Download Persian Version:

https://daneshyari.com/article/1326081

Daneshyari.com