

Journal ofOrgano metallic Chemistry

Journal of Organometallic Chemistry 690 (2005) 3474-3478

www.elsevier.com/locate/jorganchem

Stereoselective synthesis of enones from the reaction of aldehydes with sterically hindered dimethylaluminum enolates

Zachary S. Sales, Roger Nassar, J. Jacob Morris, Kenneth W. Henderson *

Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46656, USA

Received 13 April 2005; revised 27 April 2005; accepted 27 April 2005 Available online 15 June 2005

Abstract

The equimolar reaction between Me₃Al and the methyl ketones $(2,4,6-R_3-C_6H_2)C(O)CH_3$, where R = Me or iPr , results in exclusive formation of the enolization products $[\{Me_2AlOC(2,4,6-R_3-C_6H_2)=CH_2\}_2]$, 1 and 2, upon heating to reflux temperature in toluene solution. The property of Me₃Al acting as a base rather than a nucleophile in these reactions is due to the sterically hindered nature of the ketones. Crystallographic analysis of 2 revealed a dimeric complex where the metal centers are bridged by the enolate anions, consistent with the previous studies of 1. Addition of a series of aldehydes to hexane solutions of 1 and 2, followed by heating to reflux for several hours gave enone products in generally high conversions. The presumed aluminum aldolate intermediates were not detected by in situ monitoring studies and are presumably short-lived under the reaction conditions. The enone products from the addition reactions were formed predominantly as the *E*-isomers with good to excellent stereoselectivities. © 2005 Elsevier B.V. All rights reserved.

Keywords: Enolates; Aluminum; Enones; Crystal structure

1. Introduction

The reaction between triorganoaluminum compounds and ketones commonly results in four outcomes: acid-base complex formation, reduction via β-hydride elimination, direct alkylation across the carbonyl, and enolization [1]. The product distribution is influenced by all the expected factors including the nature of the organic anions, the size and electronics of the ketone, the temperature of the reaction and the solvent media used [2,3]. In general, these reactions produce a mixture of products and hence their utility in synthesis has remained limited [4,5]. We previously reported that the reaction between Me₃Al and 2,4,6-trimethylacetophenone in toluene under ambient temperature resulted in formation of the complex $[Me_3Al \cdot O=C(2,4,6-Me_3-C_6H_2)Me]$, cleanly converted to the enolate [{Me₂AlOC(2,4,6- $Me_3-C_6H_2$ = CH_2 }₂], **1** upon heating to reflux for several hours [6,7]. The behavior of Me₃Al as a base rather than

2. Results and discussion

2.1. Syntheses and structural characterization

The enolate complex $[\{Me_2AlOC(2,4,6-Me_3-C_6H_2)=CH_2\}_2]$, 1, was prepared as previously described [6]. For

a nucleophile to give exclusive enolization was somewhat unexpected considering the small size of the organic moiety [8,9]. The key to this selectivity was found to be dependant on the steric encumbrance of the aromatic ketone, where disubstitution at the *ortho* positions of the ring by methyl groups was required for enolization to be the dominant reaction pathway. We now report an extension to this work, investigating the reaction chemistry of two aluminum enolates derived by this direct enolization route with a series of aldehydes. In addition, the crystal structure of a new dimethylaluminum enolate intermediate has been elucidated.

^{*} Corresponding author. Tel.: +574 631 8025; fax: +574 631 6652. E-mail address: khenders@nd.edu (K.W. Henderson).

comparative purposes, the enolate [{Me₂AlO-C(2,4,6- i Pr₃–C₆H₂)=CH₂}₂], **2**, was targeted and successfully prepared as the sole product from the equimolar reaction of Me₃Al with 2,4,6-triisopropylace-tophenone in toluene solution after heating to reflux for 3 h (Eq. (1)).

$$2Me_{3}AI + 2 \xrightarrow{\text{Me}} \text{Me} \xrightarrow{\text{reflux}, 3h} \xrightarrow{\text{Me}} \text{Me} \xrightarrow{\text{Al}} \text{Me} + 2CH_{4}$$

$$R = \xrightarrow{\text{Me}} \xrightarrow{\text{Me}} \xrightarrow{\text{lpr}} \xrightarrow{\text{lpr}} \text{lpr}$$

$$(1)$$

Removal of the solvent in vacuo and replacement by hexane followed by cooling the solution to -45 °C resulted in the precipitation of high quality crystals of 2. In turn, this allowed the characterization of 2 by ¹H and ¹³C NMR spectroscopy, and also by single-crystal X-ray diffraction. The ¹H NMR spectrum of 2 in C₆D₆ shows a single set of signals for the aromatic meta-Hs and also for the methyl groups attached to the aluminum, consistent with the expected composition. A pair of doublets due to the olefinic protons are present and two independent sets of 'Pr groups in a 2:1 ratio arising from the *ortho*- and *para*-units, respectively, complete the spectrum. A somewhat different pattern is found in the ¹³C NMR spectrum of 2. Three independent methyl resonances at δ 23.35, 24.48 and 27.07 are found, along with two methine signals at δ 31.23 and 35.15. This pattern suggests that the methyl carbons of the *ortho*-isopropyl groups are inequivalent. Indeed, the recent characterization by Kunicki of the closely related complex [Ph₂AlOC(2,4,6-ⁱPr₃-C₆H₂)= CH₂}₂], 3, displays a very similar ¹³C NMR spectrum [10]. This pattern of signals can be explained by restricted rotation of the aromatic groups locking the isopropyl units into asymmetrical environments [11]. Interestingly, the ¹H NMR spectrum of 3 also displays this behavior whereas that of 2 shows only a single set of resonances for the ortho-units. This suggests greater flexibility in 2 due to smaller methyl groups being attached to the metal compared with phenyl groups in 3. These studies are also consistent with the expected dimeric aggregation remaining intact in solution.

X-ray crystallographic studies of **2** revealed the expected dimeric arrangement, with a central Al₂O₂ ring (Fig. 1). This structure is in accord with those previously reported for **1** and **3** [6,10]. Two almost identical but independent dimers are formed within the unit cell of **2** and their key bond lengths and angles are given in Table 1. In general, the geometric parameters in **2** are similar to those reported for related Al₂O₂ ring systems [12]. For example, the mean Al–O distance of 1.870 Å (range 1.863–1.878 Å), and the mean Al–C distance of 1.950 Å

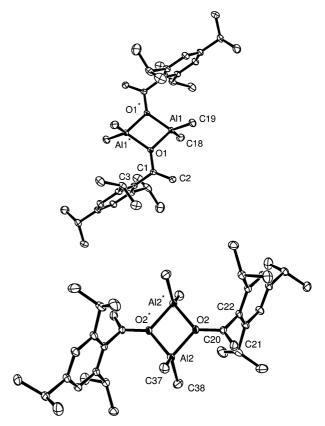


Fig. 1. Crystal structure of the two independent molecules of 2, showing two alternative views of the dimers. Hydrogen atoms are removed for clarity.

(range 1.949-1.952 Å) are within the ranges of those found in 1 and 3. Also the mean Al-O-Al and O-Al-O angles of 100.75° and 79.25° in 2 are within 1.5° of those in 1 and 3. In all three complexes 1-3 the enolate group sits approximately in the same plane as the Al₂O₂ ring, with Al-O-C=CH₂ dihedral angles of 23.3 and 22.0° in 1 and 3, whereas the two independent dimers of 2 have these angles at 28.1° and 31.8°. The overall similarity of 1-3 indicates that the increase in steric hindrance at the ortho-positions of the aromatic ring in 2 and 3 compared to 1, or the increased size of the organic anion of 3 compared to that in 1 and 2 has little notable effect on the structures adopted. Nevertheless, the structural characterization of 2 represents an addition to the small handful of crystal structures that have been successfully completed for aluminum enolates derived from simple ketones [13].

2.2. Reaction of enolates 1 and 2 with aldehydes

We were interested in determining the reactivity of the aluminum enolates 1 and 2 with aldehydes. From our perspective the most desirable reaction was aldol addition, due to the importance of this transformation in the stereoselective formation of new carbon-carbon

Download English Version:

https://daneshyari.com/en/article/1326363

Download Persian Version:

https://daneshyari.com/article/1326363

Daneshyari.com