

Available online at www.sciencedirect.com

Journal of Organometallic Chemistry 692 (2007) 3901-3906

www.elsevier.com/locate/jorganchem

Si–C coupling reaction of polychloromethanes with HSiCl₃ in the presence of Bu₄PCl: Convenient synthetic method for bis(chlorosilyl)methanes

Dong Euy Jung ^{a,b}, Seung-Hyun Kang ^a, Joon Soo Han ^a, Weon Cheol Lim ^a, Young-ae W. Park ^b, Bok Ryul Yoo ^{a,*}

^a Organosilicon Chemistry Laboratory, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650, Republic of Korea ^b Department of Chemistry, Sangmyung University, Seoul 110-743, Republic of Korea

> Received 15 February 2007; received in revised form 16 May 2007; accepted 17 May 2007 Available online 2 June 2007

Abstract

Coupling reaction of polychloromethanes $CH_{4-n}CI_n$ (n = 2-4) with HSiCl₃ in the presence of tetrabutylphosphonium chloride (Bu₄PCl) as a catalyst occurred at temperatures ranging from 30 °C to 150 °C. The reactivity of polychloromethanes increases as the number of chlorine-substituents on the carbon increases. In the reactions of CCl₄ with HSiCl₃, a variety of coupling products such as bis(chlorosilyl)methanes $CH_2(SiCl_3)(SiXCl_2)$ [X = Cl (1a), H (1b)], (chlorosilyl)trichloromthanes $Cl_3CSiXCl_2$ [X = Cl (2a), H (2b)], and (chlorosilyl)dichloromthanes $Cl_2HCSiXCl_2$ [X = Cl (3a), H (3b)] were obtained along with reductive dechlorination products such as CHCl₃ and CH₂Cl₂ depending on the reaction temperature. In the reaction of CCl₄, 2a is formed at the initial stage of the coupling reaction and converted to give CHCl₃ at low temperature of 30 °C, to give 1a, 3a, and CHCl₃ at 60 °C, and to afford 1a as major product and CH₂Cl₂ in competition above 100 °C. Si–H bond containing silylmethanes can be formed by the H–Cl exchange reaction with HSiCl₃. Reaction of CHCl₃ with HSiCl₃ took placed at 80 °C to give three compounds 1a, 3a, and CH₂Cl₂, and finally 3a was converted to give 1a and CH₂Cl₂ at longer reaction time. While the condition for the reaction of CCl₄ and CHCl₃ at 100 °C for 8 h, respectively, and in 41% (34:7) yield from that of CH₂Cl₂ at 170 °C for 12 h. In the Si–C coupling reaction of polychloromethanes with HSiCl₃, it seems likely that a trichlorosilyl anion generated from the reaction of HSiCl₃ with Bu₄PCl is an important key intermediate.

Keywords: Tetrachloromethane; Chloroform; Methylene chloride; Bis(chlorosilyl)methane; Trichlorosilane; Si-C coupling

1. Introduction

Trichlorosilane (HSiCl₃) undergoes a variety of interesting and useful Si–C bond formation reactions with organometallic reagents [1] and unsaturated organic compounds in the presence of transition metal complexes [2] to give various organosilanes containing Si–Cl bonds as functionalities, which are used as important starting materials in the silicones industry [3]. Another established Si–C bond forming method is the organic base-catalyzed reaction of activated alkyl chlorides such as benzyl chloride and polychlromethane with HSiCl₃ [4]. Tertiary amines catalyze the coupling reaction of activated polychloromethanes [4] such as chloroform (CHCl₃) and carbon tetrachloride (CCl₄) [5] with HSiCl₃ affording bis(chlorosilyl)methanes in moderate yields, respectively. Recently, we have reported successful coupling reactions with organic chlorides affording alkyltrichlorosilanes in high yields in the presence of quaternary phosphonium chloride as a catalyst in place of amine [6,7], the introduction of SiCl₂ moiety to butadienes to form 1,1dichlorosilacyclopent-3-enes [8], and the double silylation

^{*} Corresponding author. Tel.: +82 2 958 5087; fax: +82 2 958 5089. *E-mail addresses:* bryoo@kist.re.kr, bryoo0@hanafos.com (B.R. Yoo).

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2007.05.041

of olefins with HSiCl₃ to produce α,β -(trichlorosilyl)alkanes as major products [9]. In the coupling reaction of primary alkyl chlorides, their reactivity depends on the substituents at the carbon of C-Cl. The reaction of activated alkyl chlorides such as allyl chlorides and benzyl chlorides occurs at 130 °C, but those of unactivated alkyl chlorides such as 1hexyl chloride and 1-octyl chloride require the high temperature of 170 °C [7]. The success of these coupling reactions prompted us to extend this reaction to polychloromethanes $CH_{4-n}Cl_n$ (n = 2-4), which are expected to react with HSiCl₃ to yield poly(silyl)methanes as coupling products. The reaction of polychloromethanes with HSiCl₃ in the presence of Bu₄PCl occurred at the temperatures ranging from 30 °C to 150 °C depending on chlorine-substituents on the carbon to give a variety of Si-C coupling products and reductive dechlorination compounds. Herein, we wish to report the Bu₄PCl-catalyzed reaction of polychloromethanes with HSiCl₃ and a mechanism for the formation of Si-C coupling compounds in details.

2. Results and discussion

2.1. Reaction of CCl₄ with HSiCl₃

When the most activated CCl₄ among the polychloromethanes reacted with HSiCl₃, a variety of coupling products such as bis(chlorosilyl)methanes CH₂(SiCl₃)(SiXCl₂) [X = Cl (**1a**), H (**1b**)], (chlorosilyl)trichloromethanes Cl₃CSiXCl₂ [X = Cl (**2a**), H (**2b**)], and (chlorosilyl)dichloromethanes Cl₂HCSiXCl₂[X = Cl (**3a**), H (**3b**)] were obtained along with reductive dechlorination products such as CHCl₃ and CH₂Cl₂ depending on the reaction temperatures (Eq. (1)). Si–H bond containing silylmethanes (**1b**–**3b**) can be formed by the H–Cl exchange reaction with HSiCl₃. The results obtained from the reactions of CCl₄ with HSiCl₃ at temperatures ranging from 30 °C to 130 °C are summarized in Table 1.

 $\mathbf{X} = \mathbf{Cl} (\mathbf{a}), \mathbf{H} (\mathbf{b})$

As shown in Table 1, the reaction of CCl₄ with HSiCl₃ occurred at 30 °C and gave a coupling product 2a (3%) and a reductive dechlorination product $CHCl_3$ (42%) as a major product with a 45% consumption of CCl₄ for 8 h (entry 1). At the higher temperature of 60 °C, a 4 h reaction gave a 76% consumption of CCl₄ and afforded a 3:2 mixture of 2a and 2b and CHCl₃ in 48% and 27% yields, respectively, (entry 2) and an 8 h reaction with all consumption of CCl₄ gave a 15:1 mixture of **1a** and **1b**, a 15:1 mixture of 2a and 2b, and a 12:1 mixture of 3a and **3b** in 16%, 16% and 13% yields, respectively, as well as $CHCl_3$ in 53% yield (entry 3). When the same reaction was carried out at the temperature of 80 °C, all CCl₄ was consumed within 2 h to give a 34:3 mixture of 1a and 1b and a 14:1 mixture of 3a and 3b in 37% and 15% yields along with reductive dechlorination products such as $CHCl_3$ (47%) and CH_2Cl_2 (1%) (entry 4). In a longer 8 h reaction at 80 °C, the yield of compounds 1 consisted of a 51:3 mixture of **1a** and **1b** increased up to 54% along with CH₂Cl₂ (11%), but that of CHCl₃ decreased to 31%, suggesting that the coupling reaction of CHCl₃ with HSiCl₃ takes place at 80 °C (entry 5). The yield of a mixture of 1 was maximized to 69% in an 8 h reaction at 100 °C (entry 6) and then decreased to 53% in a 1 h reaction at a higher temperature of 130 °C (entry 7). When HSiMeCl₂ was used as a hydrosilane instead of HSiCl₃, no Si-C coupling reaction with CCl₄ even at 80 °C was observed. In the reaction of CCl_4 with HSiCl₃, the coupling product 2a formed at the beginning stage is an important intermediate leading to silylmethanes 3 and CHCl₃ (entries 2 and 3), and finally to bis-silulation products 1.

2.2. Reaction of Cl₃SiCCl₃ (2a) with HSiCl₃

In order to look into the reaction pathway to 1 from CCl₄, monosilylated compounds 2a, formed at the early

$$CCl_4 + HSiCl_3 \longrightarrow Cl_3Si-CH_2-SiXCl_2 + Cl_2XSi-CCl_3 + Cl_2XSi-CHCl_2 + CHCl_3 + CH_2Cl_2$$

$$HCl \quad 1 \qquad 2 \qquad 3 \qquad (1)$$

Table 1	
Bu ₄ PCl-catalyzed reactions of CCl ₄ with HSiCl ₃ ^a	

Entry #	CCl ₄ ^b	Reaction conditions		Product yields (%) ^c				
		Temperature (°C)	Time (h)	1 (a:b)	2 (a:b)	3 (a:b)	CHCl ₃	CH ₂ Cl ₂
1	55	30	8	_	3(3:-)		42	
2	24	60	4	_	48 (29:19)		27	
3		60	8	16 (15:1)	16 (15:1)	13 (12:1)	53	
4		80	2	37 (34:3)	_	15 (14:1)	47	1
5		80	8	54 (51:3)	_	3 (3:-)	31	11
6		100	8	69 (67:2)	_		_	30
7		130	1	53 (52:1)	_		_	33

^a The reaction was carried out using a 10:60:1 mol ratio of CCl₄, HSiCl₃, and Bu₄PCl.

^b Unreacted CCl₄ (%) remained.

^c Yields are on the basis of CCl₄ used and were determined by GLC with use of internal standard.

Download English Version:

https://daneshyari.com/en/article/1326414

Download Persian Version:

https://daneshyari.com/article/1326414

Daneshyari.com