

Journal ofOrgano metallic Chemistry

Journal of Organometallic Chemistry 690 (2005) 2775-2779

www.elsevier.com/locate/jorganchem

Metal complexes with an aminosubstituted tricarbollide ligand

Dmitry S. Perekalin ^a, Konstantin A. Lyssenko ^a, Pavel V. Petrovskii ^a, Josef Holub ^b, Bohumil Štíbr ^{b,*}, Alexander R. Kudinov ^{a,*}

^a A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119991 Moscow GSP-1, Russian Federation
^b Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic (Research Centre for New Inorganic Compounds and Advanced Materials, University of Pardubice), 250 68, Řež, Czech Republic

Received 7 September 2004; revised 14 January 2005; accepted 14 January 2005 Available online 14 April 2005

Abstract

The reaction of the tricarbollide salt $Tl[7-tBuNH-7,8,9-C_3B_8H_{10}]$ (Tl1) with $[(cod)Rh(THF)_x]^+$ gives the rhodium complex $[1-(cod)-12-tBuNH-1,2,4,12-RhC_3B_8H_{10}]$ in almost quantitative yield. Analogous reactions of Tl1 with $[(ring)M(THF)_x]^{2+}$ ((ring)M = Cp*Rh and $(1,3,5-C_6H_3Me_3)Ru$) afford the corresponding metallatricarbollides $[1-(ring)-12-tBuNH-1,2,4,12-MC_3B_8H_{10}]$ in ca. 50% yield. Refluxing Tl1 with $[Mn(CO)_3(MeCN)_3]^+$ in THF give the tricarbollide analogue of cymantrene, $[1,1,1-(CO)_3-12-tBuNH-1,2,4,12-MnC_3B_8H_{10}]$, the structure of which was determined by single-crystal X-ray diffraction analysis. In all cases, the formation of the metallatricarbollide complexes is accompanied by polyhedral rearrangement leading to the maximum separation of the cage carbon atoms.

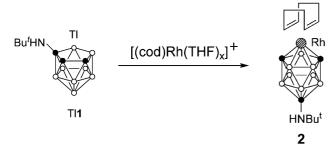
© 2005 Elsevier B.V. All rights reserved.

Keywords: Boron; Metallacarboranes; Tricarbollide; Polyhedral rearrangement; X-ray diffraction

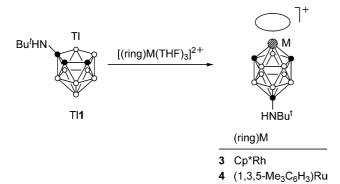
1. Introduction

A convenient, high-yield synthesis of the aminosubstituted tricarbollide anion [7-tBuNH-7,8,9-C₃B₈H₁₀]⁻ (1), reported in 1999 [1], allowed for the development of its metal-complexation chemistry. Anion 1 is supposed to be a much closer analogue of Cp⁻ than the well-known dicarbollide dianion, [7,8-C₂B₉H₁₁]²⁻, due to its monoanionic character. A characteristic feature of the iron [2–4], cobalt [5] and ruthenium [6] tricarbollide sandwich complexes prepared earlier is that their formation is accompanied by extensive polyhedral rearrangement. Herein, we report the synthesis of analogous ruthenium, rhodium, and

2.1. Synthesis of metallatricarbollides


One of the methods for the preparation of the [(cod)RhCp] complex is the reaction between [(cod)RhCl]₂ and CpTl [7]. We have found, however, that the analogous direct reaction of [(cod)RhCl]₂ with the thallium salt of tricarbollide anion, Tl[7-*t*BuNH-7,8,9-C₃B₈H₁₀] (Tl1), gives no isolable metallacarborane species, presumably due to the low reactivity of the starting rhodium compound. In order to activate the rhodium precursor, the reaction of [(cod)RhCl]₂ with AgOTf in THF was used to generate [(cod)Rh(THF)_x]⁺

manganese tricarbollide complexes along with a singlecrystal X-ray diffraction analysis of one of them.

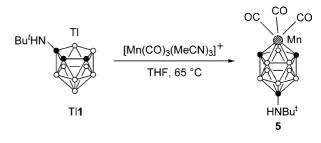

^{2.} Results and discussion

^{*} Corresponding authors. Tel.: +420 2 661 73109; fax (internat.): +420 2 20941502 (B. Štíbr); Fax (internat.): +7 095 1355085 (A.R. Kudinov).

E-mail addresses: stibr@iic.cas.cz (B. Śtíbr), arkudinov@ineos. ac.ru (A.R. Kudinov).

Scheme 1.

Scheme 2.


[8]. Indeed, the reaction of this labile solvate complex with Tl1 gives the rhodium tricarbollide complex [1-(cod)-12-tBuNH-1,2,4,12-RhC₃B₈H₁₀] (2) in almost quantitative yield (Scheme 1). It should be noted that, even at room temperature, the formation of 2 is accompanied by polyhedral rearrangement leading to the maximum separation of the cage carbon atoms. The same rearrangement pattern has been observed previously for all other metal complexes of anion 1, but at considerably higher temperatures (≥ 110 °C).

Similarly as in the case of [(cod)RhCl]₂, direct reactions of either [Cp*RhCl₂]₂ or [(1,3,5-C₆H₃Me₃)RuCl₂]₂ with Tl1 do not lead to tricarbollide complexes.¹ These reactions were, therefore, carried out using the labile THF solvates [Cp*Rh(THF)₃]²⁺ [9] and [(1,3,5-C₆H₃Me₃)Ru(THF)₃]²⁺, which were generated via reactions of the corresponding chlorides with AgOTf in THF (Scheme 2). The reactions with anion 1 led subsequently to the isolation of the cationic complexes of constitution [1-Cp*-12-tBuNH-1,2,4,12-RhC₃B₈H₁₀]⁺ (3) and [1-(C₆H₃Me₃)-12-tBuNH-1,2,4,12-RuC₃B₈H₁₀]⁺ (4) (yields ca. 50%), which were characterized as triflate salts.

In an analogous manner, no reactions were observed upon refluxing either [Mn(CO)₅Br] or [Re(CO)₅Br] with

Tl1 in THF for 24 h. However, the reaction of the more labile $[Mn(CO)_3(MeCN)_3]^+$ cation with Tl1 in refluxing THF yields the manganese complex, $[1,1,1-(CO)_3-12-tBuNH-1,2,4,12-MnC_3B_8H_{10}]$ (5), which can be considered as a tricarbollide analogue of cymantrene (Scheme 3).

All the compounds obtained were characterized by ¹H and ¹¹B NMR spectroscopy, and elemental analysis. The ¹¹B{¹H} NMR spectra display typically five 2:2:1:1:2 singlets (with incidental overlaps), which is

Scheme 3.

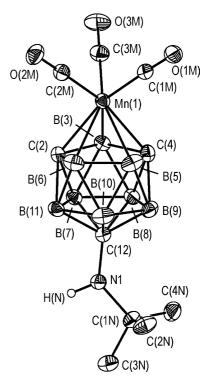


Fig. 1. Molecular structure of **5**. Atoms are represented by 50% thermal ellipsoids. Selected distances (Å): Mn(1)–C(2) 2.193(2), Mn(1)–C(4) 2.187(2), Mn(1)–C(1M) 1.784(3), Mn(1)–C(2M) 1.788(3), Mn(1)–C(3M) 1.802(3), Mn(1)–B(3) 2.156(3), Mn(1)–B(5) 2.158(3), Mn(1)–B(6) 2.144(3), $\Delta(Mn(1)\cdots C_2B_3$ -plane) 1.609, C(1M)–O(1M) 1.146(3), C(2M)–O(2M) 1.143(3), C(3M)–O(3M) 1.144(3), C(2)–B(3) 1.692(4), C(2)–B(6) 1.698(4), C(4)–B(3) 1.692(3), C(4)–B(5) 1.711(4), C(12)–C(12)

 $^{^1}$ The chloride-bridged cations $\left[Cp^*Rh(\mu\text{-Cl})_3RhCp^*\right]^+$ and $\left[(C_6H_3Me_3)Ru(\mu\text{-Cl})_3Ru(C_6H_3Me_3)\right]^+$ are formed instead.

Download English Version:

https://daneshyari.com/en/article/1326443

Download Persian Version:

https://daneshyari.com/article/1326443

<u>Daneshyari.com</u>