ELSEVIER

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Note

Cationic iridium-BINAP complex-catalyzed addition of aryl ketones to alkynes and alkenes via directed C-H bond cleavage

Kyoji Tsuchikama, Mitsugu Kasagawa, Yu-Ki Hashimoto, Kohei Endo, Takanori Shibata*

Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Okubo, Shinjuku, Tokyo 169-8555, Japan

ARTICLE INFO

Article history: Received 4 August 2008 Received in revised form 22 September 2008

Accepted 25 September 2008 Available online 8 October 2008

Keywords: Iridium C-H bond cleavage Ketone Alkyne Alkene

ABSTRACT

Cationic Ir complex ([Ir(cod)₂]BF₄ + BINAP) catalyzed the addition of *ortho*-C–H bonds in aryl ketones to alkynes, which gave alkenylated products in good to high yield. Styrene derivatives were good substrates, and the enantioselective addition to norbornene was also described.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The transition metal-catalyzed inactive C-H bond functionalization is an attractive process from both synthetic and atom-economical points of view, because it can eliminate the preactivation step of substrates and reduce waste by-products [1]. Especially, Murai's report [2a], where *ortho*-C-H bonds in aryl ketones were added to olefins catalyzed by a ruthenium complex, opened a new frontier in highly selective C-H bond activation using directing groups such as carbonyl and imine [2]. In most of these examples, transition metal complexes with monodentate ligands were used and the examples of catalysts with bidentate ligands were few [3].

We previously reported that the cationic Rh-BIPHEP (BIPHEP: 2,2'-bis(diphenylphosphino)-1,1'-biphenyl) complex-catalyzed hydroarylative cyclization of diynes and enynes with aryl ketones [4]. We assumed that the bond cleavage of the *ortho-C-H* bonds in aryl ketones is an initial step of the cyclization [5]. In the course of our mechanistic studies, Rh-BIPHEP was also found to be an active catalyst in the addition of benzophenone to diphenylacetylene, which encouraged us to consider that cationic transition metaldiphosphine complex could catalyze directed C-H bond functionalization. We here disclose that cationic Ir-BINAP complex exhibits

2. Results and discussion

2.1. Optimization of the reaction conditions

We chose diphenylacetylene (1a) and acetophenone (2a) as model substrates, and examined several Rh and Ir catalysts in refluxed 1,2-dichloroethane (DCE) for 20 h (Table 1). [Rh(biphep)]BF4, which was prepared in situ from [Rh(cod)2]BF4 and BIPHEP, and pre-treated with hydrogen gas to exclude 1,5-cyclooctadiene (COD), gave a low conversion (entry 1). Notably, the replacement of Rh with Ir dramatically increased the conversion ratio and yield (entry 2). Moreover, the exclusion of COD was found to be unnecessary: [Ir(cod)₂]BF₄ and BIPHEP gave hydroarylative product 3aa with high yield along with a small amount of dialkenylated product 4aa (entry 3). rac-BINAP was more effective and product 3aa was afforded in high yield as a sole stereoisomer (entry 4). In the case of monodentate ligands such as triphenyl and tricyclohexyl phosphines, and other bidentate ones such as 1,2-bis(2,5-dimethylphospholano)benzene (MeDUPHOS), most substrates were recovered and the adducts could not be detected under the same reaction conditions. These results mean that Ir-bidentate biaryl phosphine complex possesses high catalytic activity for the present reaction. Actually, the catalyst loading could be lowered to 1 mol%, which also achieved the high yield (entry 5). We decided to apply the reaction conditions of Entry 4 for further investigation.

the high catalytic activity in the addition of aryl ketones to alkynes [6]. The additions to several alkenes are also reported.

^{*} Corresponding author. Tel./fax: +81 3 5286 8098. E-mail address: tshibata@waseda.jp (T. Shibata).

Table 1 Screening of reaction conditions.

Entry	M	Ligand	Yield of 3aa / $%^a$ (<i>E</i> / <i>Z</i>) ^b	Yield of 4aa /%
1 ^c	Rh	ВІРНЕР	22 (15/1)	ND ^d
2 ^c	Ir	BIPHEP	63 (1/1.8)	ND^d
3	Ir	BIPHEP	74 (7.4/1)	6
4	Ir	rac-BINAP	83 (75) ^e (>20/1)	15
5 ^f	Ir	rac-BINAP	80 (13/1)	16

- ^a Yield was determined by ¹H NMR integration relative to 1,1,2,2-tetrachloroethane as an internal standard.
- ^b The stereochemistry of **3aa** was determined by the comparison of ¹H NMR analysis of that of **3ai** in Table 2.
- ^c 1,5-Cyclooctadiene (cod) in the metal catalyst was excluded prior to the reaction.
- d Not detected.
- e Isolated yield.
- f The catalyst (1 mol%) was loaded.

2.2. Examination of several aryl ketones with alkynes

We examined the addition of several aryl ketones to alkyne **1a** (Table 2). Various substituents at the *para* position of acetophenone were tolerable in the present reaction: *p*-methyl, *p*-methoxy, and *p*-trifluoromethyl groups did not retard the reaction and good conversions to mono and dialkenylated products were achieved (entries 1–3). However, substituents at the *ortho* position significantly affected the reactivity: tetralone (**2e**) and *o*-methoxyacetophenone (**2f**) provided the hydroarylative products in high yields but *o*-trifluoromethylacetophenone (**2g**) did not give detectable

amount of the corresponding adduct (entries 4–6). Benzophenone (**2h**) and *tert*-butyl phenyl ketone (**2i**) were submitted to the reaction and the sole stereoisomers were obtained with high to quantitative yield (entries 7 and 8). The stereochemistry of adducts **3ah** and **3ai** was determined to be *E* by X-ray crystallography [7], which supports that the present reaction would involve carbonyl-directed *ortho-C-H* bond cleavage of aryl ketones and *syn*-addition to diphenylacetylene.

1-Phenyl-2-(trimethylsilyl)acetylene (**1b**) also reacted with ketone **2f**: adduct **3bf** was obtained in moderate yield along with an inseparable isomer Eq. (1) [8,9].

Table 2
Direct addition of ortho-C-H bonds of aryl ketones 2 to diphenylacetylene (1a).

Entry	R ¹	R^2	2	Yield of 3 /% ^a (<i>E</i> / <i>Z</i>) ^b	Yield of 4 /% ^c
1	p-Me	Me	2b	67 (3ab) (5.8/1)	26 (4ab)
2	p-OMe	Me	2c	72 (3ac) (>20/1)	20 (4ac)
3	p- CF ₃	Me	2d	59 (3ad) (>20/1)	10 (4ad)
4	Н	$-(CH_2)_3-$	2e	Quant. (3ae) (5.4/1)	-
5	o-OMe	Me	2f	Quant. (3af) (>20/1)	-
6	o-CF ₃	Me	2g	ND ^d	-
7 ^e	Н	Ph	2h	Quant. (3ah) (>20/1) ^f	ND ^d
8	Н	<i>t</i> -Bu	2i	84 (3ai) (>20/1) ^f	ND^d

- ^a Isolated yield.
- ^b The stereochemistry of adduct **3** was determined by the comparison of ¹H NMR analysis of that of **3ai** in Entry 8.
- ^c Yield was determined by ¹H NMR integration relative to 1,1,2,2-tetrachloroethane as an internal standard.
- d Not detected.
- e The reaction time is 6 h.
- $^{\rm f}$ The stereochemistry was determined to be E by X-ray crystallography.

Download English Version:

https://daneshyari.com/en/article/1326884

Download Persian Version:

https://daneshyari.com/article/1326884

<u>Daneshyari.com</u>