

Journal ofOrgano metallic Chemistry

Journal of Organometallic Chemistry 689 (2004) 2000-2012

www.elsevier.com/locate/jorganchem

Chemistry of Fischer-type rhenacyclobutadiene complexes. I. Deprotonation, addition/substitution of nucleophilic reagents at α-carbon, and insertion of heteroatoms into rhenium–carbon bonds

Véronique Plantevin ^{a,1}, Andrew Wojcicki ^{a,*}

^a Department of Chemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, OH 43210-1185, USA Received 29 December 2003; accepted 8 March 2004

Abstract

The rhenacyclobutadienes (CO)₄Re(n²- C(R)C(CO₂Me)C(OR')) (2) undergo a number of reactions that mirror those of Fischer alkoxycarbene complexes. Thus, (CO)₄Re(η²-C(Me)C(CO₂Me)C(OEt)) (2a) can be deprotonated by LDA, Na[OBu-t], or Na[CH(CO₂Me)₂] to give the ylide-like conjugate base [(CO)₄Re(η^2 -C(=CH₂)C(CO₂Me)C(OEt)]⁻ (3), which was isolated as PPN(3). Li(3) undergoes deuteriation with DCl/D₂O and alkylation with Et₃OPF₆ at ReC=CH₂, with the latter reaction affording (CO)₄Re(η²-C(CH₂Et)C(CO₂Me)C(OEt)) (4). Repetition of the sequence deprotonation-ethylation on 4 generates $(CO)_4Re(\eta^2-C(CHEt_2)C(CO_2Me)C(OEt))$ (5). The nature of the alkoxy substituent in 2 can be varied by use of the rhenacyclobutenones Na[(CO)₄Re(η²-C(R)C(CO₂Me)C(O))] (Na(1)) in conjunction with AcCl and R'OH to produce a series of new complexes $(R = Ph, R' = Et (2b); R = Me, R' = CH_2CH = CH_2 (2c), (CH_2)_3C = CH (2d), Me (2e))$. Aminolysis of 2a with the primary and secondary amines PhNH₂, HO(CH₂)₂NH, p-TolNH₂, and Et₂NH yields the aminorhenacyclobutadiene complexes $(CO)_4Re(\eta^2-C(Me)C(CO_2Me)C(NHR' \text{ or } NR_2'))$ $(R_2'=Et_2 \text{ (6a)}; R'=Ph \text{ (6b)}, (CH_2)_2OH \text{ (6c)}, p-Tol \text{ (6d)}).$ These complexes display lesser carbene-like character than their alkoxy counterparts 2, as evidenced by ¹H and ¹³C NMR spectroscopic properties and lack of reactivity toward LDA by 6a. Reactions of each 2a and 6a with PPhMe2 at low temperature afford $(CO)_4 Re(\eta^2 - C(Me)(PPhMe_2)C(CO_2Me)C(OEt)) \ \ (7) \ \ and \ \ (CO)_3 (PPhMe_2)Re(\eta^2 - C(Me)C(CO_2Me)C(NEt_2)) \ \ (9), \ \ respectively, \ \ furple of the control of the control$ ther in agreement with the more carbenoid nature of 2a than 6a. 7 undergoes conversion to (CO)₃(PPhMe₂)Re(η²-C(Me) C(CO₂Me)C(OEt)) (8) upon heating. 2a reacts with each of (NH₄)₂[Ce(NO₃)₆], DMSO, EtNO₂/Et₃N, and Me₃NO under various conditions to afford one or both of the oxygen atom insertion products into the Re=C bonds, (CO)₄Re(κ²-OC (Me)C(CO₂Me)C(OEt)) (10) and (CO)₄Re(κ²-C(Me)C(CO₂Me)C(OEt)O) (11). In contrast, no reaction occurred between 2a and S_8 on heating. However, **6a** was converted to the NH insertion product (CO)₄Re(κ^2 -NHC(Me)C(CO₂Me)C(NEt₂)) (**12**) by the action of H₂NNH₂·H₂O at 0 °C. All new compounds were characterized by a combination of elemental analysis, mass spectrometry, and IR and NMR spectroscopy. © 2004 Elsevier B.V. All rights reserved.

Keywords: Rhenium complexes; Metallacyclobutadiene complexes; Fischer carbene complexes; Deprotonation reactions; Aminolysis reactions; Insertion reactions

1. Introduction

We have previously reported the synthesis of rhenacyclobutenone complexes $Na[(CO)_4Re(\eta^2-C(R)C(CO_2Me)C(O))]$ (Na(1)) by reaction of $Na[Re(CO)_5]$ with the activated alkynes $RC \equiv CCO_2Me$ (R = H, Me, CO_2Me) [1,2]. Alkylation of Na(1) with Et_3OPF_6 furnished the

^{*}Corresponding author. Tel.: +1-614-292-4750; fax: +1-614-292-

E-mail address: wojcicki@chemistry.ohio-state.edu (A. Wojcicki).

¹ Present address: Celgene, Signal Research Division, 4550 Towne Centre Court, San Diego, CA 92121, USA.

corresponding rhenacyclobutadiene complexes (CO)₄Re $(\eta^2\text{-C}(R)C(CO_2Me)C(OEt))$ (2).

Structural, spectroscopic [1,2] and limited reaction chemistry studies on **2** [1–3] have indicated that these complexes may be regarded as metallacyclobutadiene analogues of Fischer-type carbenes [4], in the same sense that Schrock metallacyclobutadienes [5] are related to Schrock-type carbenes (alkylidenes) [6] (cf. **I** and **II**). Fischer carbene and metallacyclobutadiene complexes generally contain a low oxidation state transition metal in conjunction with carbonyl ligands, are often stabilized by the presence of a heteroatom bonded to carbene carbon, and show electrophilic properties. In contrast, Schrock alkylidene and metallacyclobutadiene complexes incorporate metal in a high formal oxidation state and behave as nucleophiles. ²

$$M \longrightarrow M \longrightarrow M$$

metallacyclobutadiene

metal carbene/alkylidene

Since their discovery in 1964 [8], Fischer carbene complexes have shown extensive reaction chemistry and are considered to be one of the most versatile reagents in organic synthesis [9,10]. To explore chemical analogies between Fischer carbene and metallacyclobutadiene complexes, we have investigated several aspects of re-

action chemistry of **2** and related rhenacyclobutadienes. Reported in this paper are our studies directed at developing further methods of synthesis of Fischer rhenacyclopentadiene complexes and at expanding the scope of their addition/substitution reactions with nucleophiles as well as insertion reactions of heteroatoms into Re=C bonds. The accompanying paper is concerned with reactions of **2** and derivatives with alkynes and sulfonium ylides and with rearrangements induced by nitriles and pyridine [11].

2. Experimental

2.1. General procedures and measurements

Reactions and manipulations of air-sensitive compounds were conducted under an atmosphere of dry argon by use of standard procedures [12]. Solvents were dried [13], distilled under argon, and degassed before use. Elemental analyses were carried out by M-H-W Laboratories, Phoenix, AZ and Guelph Chemical Laboratories Ltd, London, Ont., Canada. IR and NMR (¹H, ²H, ¹³C, and ³¹P) spectra were obtained as previously described [14,15]. Mass spectra were recorded on a Kratos VG70-250S spectrometer by using either electron impact (EI) or fast atom bombardment (FAB) techniques. All listed mass peaks are those of ions containing ¹⁸⁷Re. Column chromatography was done on silica gel (Merck grade 60, 230–240 mesh).

2.2. Materials

Reagents were procured from various commercial sources and used as received. A solution of Na[Re(CO)₅] in THF was prepared as described previously [2]. Rhenacyclobutenone Na[(CO)₄Re(η^2 -C(Me)C(CO₂Me) C(O)] (Na(1a))) was synthesized according to a procedure reported in the literature [2], but generally on a larger (ca. 4 times) scale, which resulted in the formation of purer product (less polynuclear rhenium carbonyl impurity). The complex (CO)₄Re(η^2 -C(Me)C(CO₂Me)C(OEt)) (2a) was obtained by treatment of Na(1a) with Et₃OPF₆ [2] (Method 1) or with AcCl and EtOH (Method 2, cf. Section 2.4.1.).

2.3. Deprotonation reactions of $(CO)_4Re(\eta^2-C(Me)C(CO_2Me)C(OEt))$ (2a) and deuteriation or alkylation of resultant $M[(CO)_4Re(\eta^2-C(=CH_2)C(CO_2Me)C(OEt))]$ (M(3): M=Li, Na, PPN)

2.3.1. Synthesis of $PPN[(CO)_4Re(\eta^2-C(=CH_2)C(CO_2-Me)C(OEt))]$ (PPN(3): $PPN=(Ph_3P)_2N$)

A solution of **2a** (0.349 g, 0.770 mmol) in 20 ml of THF at -78 °C was treated with 1 equivalent of LDA (lithium disopropylamide) in hexane (0.970 ml, 0.8 M)

² However, some metal carbene/alkylidene complexes show amphiphilic properties [7].

Download English Version:

https://daneshyari.com/en/article/1327784

Download Persian Version:

https://daneshyari.com/article/1327784

<u>Daneshyari.com</u>