

Available online at www.sciencedirect.com

Journal of Organometallic Chemistry 690 (2005) 2186-2190

www.elsevier.com/locate/jorganchem

Synthesis, crystal structure and in vitro antitumor activity of di-*n*-butyltin 4'-(7-oxabicyclo [2,2,1]-5-heptane-2,3-dicarboximide) benzoates

Yizong Zhou^a, Tao Jiang^{a,*}, Sumei Ren^a, Jingsheng Yu^b, Zhicheng Xia^c

^a Marine Drug and Food Institute, Ocean University of China, Qingdao, Shandong 266003, China

^b The Key Laboratory for Supramolecular Structure and materials of Ministry of Education, Jilin University, Changchun 130023, China ^c Department of Chemistry, McGill University, Montreal, Canada H3A 2K6

> Received 16 September 2004; accepted 31 January 2005 Available online 14 April 2005

Abstract

Dibutyltin(IV) oxide reacts with the cantharidin analogue, 4'-(7-oxabicyclo [2,2,1]-5-heptane-2,3-dicarboximide) benzoic acid, **A**, to give the complexes $[(p-C_8H_8NO_3-C_6H_4-COOBu_2Sn_2O]_2$ (1) and $(p-C_8H_8NO_3-C_6H_4-COO)_2SnBu_2$ (2) which had been characterized by IR and ¹H, ¹³C, ¹¹⁹Sn NMR. Single X-ray crystal structure analysis has been determined for compound (1), which was analogue to most other $[(RCOOBu_2Sn)_2O]_2$. The dimer features central of $Bu_4Sn_2O_2$ unit with the two Bu_2Sn groups being linked via bridging oxygen atom. Each tin atom adopts distorted trigonal bipyramidal structures via two carbons from a dibutyl moiety and three oxygen atoms from cantharidin derivative and bridging oxygen atom. In vitro tests show compounds 1 and 2 exhibit high cytotoxicity against P388 and HL-60.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Organotin; Cantharidin; Synthesis; Crystal structure; Antitumor activity

1. Introduction

The structural chemistry of organotin carboxylate compounds has attracted considerable attention owing to their antitumor activity [1-3]. Among those compounds dibutyltin derivatives have displayed both higher activity and lower toxicity [4]. So the antitumor activity of many compounds of the type [(RCOOBu₂S-n)₂O]₂ and (RCOO)₂Bu₂Sn has been studied [5,6]. This may yield new leads for the development of antitumor drugs that may possess lower toxicity than platinum compounds [7]. Cantharidin is the main effective ingredi-

ent of Canthatis vesicatoria, a traditional Chinese medicine for malignancy treatments. Several studies have shown that Cantharidin and its derivatives possess potential antitumor activities for liver, lung, colon and breast cancers [8]. We have recently combined dibutyltin with 5-fluorouracil derivatives to synthesize the complexes of [(5-fluorouracil)-1-(CH₂)_mCOOSnBu₂]O₂ (m =1, 2) and the bioassay shows that they exhibit strong antitumor activity against OVCAR-3 and PC-14 cellline in vitro [9] and acceptable acute toxicity in mice [10].

In order to study organotin complexes as possible candidate for antitumor agent and the structure-activity relationships of these complexes, we successfully prepared the dibutyl organotin(IV) derivatives of Cantharidin analogue, which had been characterized by IR, ¹H, ¹³C and ¹¹⁹Sn NMR spectra. And crystallographic data is also presented for the compound (1).

^{*} Corresponding author. Tel.: +865322032712; fax: +865322033054. *E-mail address:* jiangtao@mail.ouc.edu.cn (T. Jiang).

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2005.01.062

2. Experimental

2.1. General methods

IR spectra were recorded using KBr pellets for solid samples on a NICOLET NEXUS 470 FT-IR. ¹H, ¹³C NMR spectra were recorded on a Bruker DPX-400 spectrometer operating at 400 and 100.6 MHz, respectively, and with TMS as the internal reference in CDCl₃.

¹¹⁹Sn NMR spectra were collected at a spectrometer frequency of 186.4 MHz on a Varian UNITY 500 with a 10 mm broadband probe. All samples were prepared in CDCl₃ solution and chemical shift values were referenced externally with Me_4Sn .

Toluene was dried over Na and distilled prior to use under N₂. Dibutyltin oxide was synthesized following the literature methods [11]. The Cantharidin analogue and its carboxylic derivative, 4'-(7-oxabicyclo [2,2,1]-5heptane-2,3-dicarboximide) benzoic acid, **A**, were synthesized according to the literature methods [12].

The tumor inhibiting effect of compounds 1 and 2 was tested in vitro by using the murine leukemia cell line P388 and human leukemia cell line HL-60 with the method of MTT. The human Lung Epithelial Cell line A-549 with the method of SRB.

2.2. Synthesis of the complexes $[(p-C_8H_8NO_3-C_6H_4-COOBu_2Sn)_2O]_2$ (1) and $(p-C_8H_8NO_3-C_6H_4-COO)_2-SnBu_2$ (2)

Di-*n*-butyltin oxide (1.24 g, 5 mmol) was dissolved in toluene (40 ml) containing a few of 4 Å molecular sieves and the carboxylic acid, A, [(1.44 g, 5 mmol) for compound (1) and (2.87 g, 10 mmol) for compound (2)] was added. The mixture was stirred under N₂ for 8 h at a temperature of 80 °C. After cooling and filtration, the residue was extracted three times with THF. Concentration of the resulting solution gave colorless solid. The solid obtained was purified by recrystallisation from THF/*n*-hexane. Compound (1): yield 57.8%, m.p.: 248–250 °C. Anal. Calc. for $C_{92}H_{120}N_4O_{22}Sn_4$: Sn, 22.52. Found: 22.32%. IR(cm⁻¹): v(CH₃) 3089, 2927, v(CH₂) 2957, 2874, v(C=O) 1770, 1709, v(Ar) 1607, 1565, 1510, 1463, v(C-O-C) 1189, v(Sn–O-Sn) 686, v(Sn–C) 574, v(Sn–O) 506. Compound (2): yield 71.6%, m.p. 286–288 °C. Anal. Calc. for $C_{38}H_{42}N_2O_{10}Sn$: 14.94. Found: 14.50%. IR(cm⁻¹): v(CH₃) 3104, 2927, v(CH₂) 2957, 2874, v(C=O) 1778, 1705, v(Ar) 1607, 1566, 1510, 1463, v(C-

2.3. Crystal structure determination of the compound (1)

O-C) 1188, v(Sn-C) 575, v(Sn-O) 505.

A single crystal $(0.40 \times 0.36 \times 0.27 \text{ mm})$ of the compound 1 was mounted in a glass capillary, and data collection was performed on a Rigaku RAXIS-RAPID diffraction by using Mo K α radiation $(\lambda = 0.71073 \text{ Å})$ in the θ range from 1.15° to 27.48° at 293 K. The final cycle of full-matrix least-squares refinement was based on 13752 observed reflections. The final agreement factor was R = 0.0807 [$I > 2\sigma(I)$]. Crystal data: C₉₂H₁₂₀N₄O₂₂Sn₄ · 6C₄H₄O, Fw = 2517.11, Triclinic, $P\overline{I}$, a = 14.0445(12) Å, b = 14.1483(15) Å, c = 19.051(2) Å, $\alpha = 96.418(2)^{\circ}$, $\beta = 105.204(5)^{\circ}$, $\gamma = 118.296(2)^{\circ}$, $V = 3089.8(6) \text{ Å}^3$, Z = 1, F(000) = 1292, $D_c = 1.353 \text{ mg/m}^3$.

3. Results and discussion

3.1. Synthesis

The carboxylic acid **A** reacts with the di-*n*-butyltin oxide yielding two different compounds depending on molar ratio acid/tin engaged in the reaction: bis[di-nbutyl(carboxylato)tin] oxide (1) for a 1:1 ratio and di-*n*-butyltin di(carboxylate) (2) for a 2:1 ratio. The synthesis route for this compound is shown in Fig. 1.

An X-ray quality crystal of the compound (1) was obtained from a 1:1 condensation of dibutyltin(IV) oxide

Fig. 1. The synthesis of compounds (1) and (2).

Download English Version:

https://daneshyari.com/en/article/1327915

Download Persian Version:

https://daneshyari.com/article/1327915

Daneshyari.com