

Journal ofOrgano metallic Chemistry

Journal of Organometallic Chemistry 690 (2005) 2278-2284

www.elsevier.com/locate/jorganchem

Stabilisation of high oxidation-state niobium using 'electron-rich' bicyclic-guanidinates

Delia B. Soria ¹, Joanna Grundy, Martyn P. Coles *, Peter B. Hitchcock

Department of Chemistry, University of Sussex, Falmer, Brighton BN1 9QJ, UK

Received 3 February 2005; revised 25 February 2005; accepted 25 February 2005 Available online 14 April 2005

Abstract

Synthetic procedures to high oxidation-state complexes of niobium incorporating the bicyclic guanidinate 1,3,4,6,7,8-hexahy-dro-2*H*-pyrimido[1,2-*a*]pyrimidinate, [hpp]⁻, are described. The ligand source was either the *N*-trimethylsilylated guanidine or the lithium guanidinate and the reaction proceeded via elimination of trimethylsilylchloride or transmetallation from NbCl₅, respectively. A 1:1 ratio of reagents afforded the mono-ligand product, Nb(hpp)Cl₄ (1) and crystallisation from acetonitrile afforded the solvated species Nb(hpp)Cl₄(MeCN) (1a), demonstrating the ability of the metal centre in 1 to bind small substrate molecules. A 2:1 ratio of lithium guanidinate to NbCl₅ resulted in formation of the seven-coordinate, bis-ligand compound, Nb(hpp)₂Cl₃ (2). These products represent the first examples of guanidinate compounds in which niobium is stable in the +5 oxidation-state, believed to result from enhanced electron donation caused by the bicyclic framework of the ligand. The molecular structures of 1, 1a and 2 are reported, presenting for the first time an opportunity to describe bonding parameters within compounds of this type.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Niobium; Guanidinate; Crystal structure

1. Introduction

During the last 20 year the amidine and guanidine compounds, RC{NR'}{NHR'} (R = alkyl/aryl and amide, respectively), have been developed as versatile sources of nitrogen based ligands, with examples of coordination to different metals throughout the periodic table [1]. For the case of guanidine-based ligands, coordination has been observed in the neutral, monoanionic and dianionic form, subject to the number of substituents and 'protonation level' of the compound (e.g., tri-

dianions whilst it is not possible to form the corresponding species for the tetra-alkyl guanidines). Amongst the salient features which contribute to the widespread application of these ligands is the capacity to regulate both the steric and electronic environment at a metal centre by designing ligands with different combinations of nitrogen substituents. This is particularly notable in the chemistry of the guanidinate anion where the presence of a zwitterionic resonance (A, Scheme 1) will strongly affect the extent of electron-donation to the metal fragment.

alkyl guanidines may be doubly deprotonated to afford

In order to maximise the contribution of resonance structure **A** to the overall bonding, work in our laboratory has concentrated on the application of the bicyclic guanidine, 1,3,4,6,7,8-hexahydro-2*H*-pyrimido[1,2-*a*] pyrimidine, hppH, as a source of ligand (Scheme 2). Constraining the substituents of the tertiary amide in the same

^{*} Corresponding author. Tel.: +1 273 877 339; fax: +1 273 677 196. E-mail address: m.p.coles@sussex.ac.uk (M.P. Coles).

¹ Member of research Career of CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, on leave from CEQUINOR, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 962, 1900 La Plata, R. Argentina.

Scheme 1. Resonance structures of the guanidinate anion.

$$(ii) \qquad (iii) \qquad Nb(hpp)_nCl_{5-n}$$

$$(iiii) \qquad 1, n = 1$$

$$2, n = 2$$

$$(iii) \qquad Nb(hpp)Cl_4(MeCN)$$

$$1a$$

$$(v) \qquad Nb(hpp)Cl_4$$

$$SiMe_3 \qquad 1$$

Scheme 2. (i) "BuLi, THF; (ii) SiMe₃Cl, THF; (iii) 1, NbCl₅, toluene or 2, 0.5 NbCl₅, toluene; (iv) NbCl₅, MeCN; (v) NbCl₅, CH₂Cl₂.

plane as the 'CN₂' amidine component in this molecule ensures a favourable alignment for overlap of the lone-pair with the empty p-orbital of the sp²-hybridised carbon. Previous work by ourselves and others have shown that the [hpp] anion chelates to a range of different main group and transition metals [2], including lithium [3], aluminium [4], tin [5], zinc [6], yttrium [7] and titanium [8,9]. Crystallographic data for a series of mono- and bis-ligand compounds of titanium has indicated notably shorter Ti-N distances in $[Ti(hpp)Cl_2(\mu-Cl)]_2$ and $Ti(hpp)_2Cl_2$ when compared to the corresponding benzamidinate [10] and acyclic guanidinate [11] compounds. These data are commensurate with an increased donation of π -electron density to the d^0 -titanium centre, although it is noted that the reduced steric influence of the bicyclic framework may also play a role in the close ligand-metal interactions.

Previous studies by ourselves and others intended to extend the application of guanidinate ligands high oxidation state group 5 metals has, to date, met with limited success. For tantalum, both protonolysis [12] and salt metathesis [13] protocols have been explored as routes to compounds containing monoanionic guanidinates. A number of different product have been isolated in addition to the target molecules, including compounds with the dianionic ligand, $[(RN=)C(NR)_2]^{2-}$ and those containing the imido group, [NR]²⁻. In an earlier study in our laboratory we sought to utilise [hpp] in the stabilisation of high oxidation-state tantalum complexes [14]. However, rather than forming the expected molecular species $Ta(hpp)_nCl_{5-n}$, the ionic species [Ta(hpp)₄][TaCl₆] was isolated, containing the previously reported eight-coordinate cation, [Ta(hpp)₄]⁺ [15]. A number of high-oxidation state niobium amidinate complexes have been reported in the literature [16]; however, this area has not been extended to include guanidinate species. The 2:1 reaction between the lithium salt of the guanidinate anion, [(Me₃Si)₂NC{NCy}₂]⁻, and NbCl₅ resulted in the isolation and characterisation of the reduced Nb(IV) product, Nb[(Me₃Si)₂NC{NCy}₂]₂Cl₂ In this contribution we wish to report the successful application of the guanidinate anion [hpp]⁻ to form high oxidation-state niobium chloride complexes.

2. Experimental

2.1. General experimental procedures

All manipulations were carried out under dry nitrogen using standard Schlenk-line and cannula techniques, or in a conventional nitrogen-filled glovebox operating at <1 ppm oxygen. Solvents were dried over the appropriate drying agent and degassed prior to use. The reagents hppH (Fluka), NbCl₅ (Aldrich), ⁿBuLi (2.5 M in hexanes, Acros) and SiMe₃Cl (Aldrich) were purchased from commercial sources and used as received. The compound hppSiMe₃ was synthesised according to the literature procedures and was used without further purification [18]. NMR spectra were recorded using a Bruker Avance DPX 300 MHz spectrometer at 300 (¹H) and 75 (¹³C{¹H}) MHz. Proton and carbon chemical shifts were referenced internally to residual solvent resonances. Elemental analyses were performed by S. Boyer at London Metropolitan University.

2.1.1. $Nb(hpp)Cl_4(1)$

2.1.1.1 Method 1. "BuLi (1.44 mL of a 2.5 M solution in hexane, 3.6 mmol) was added to a solution of hppH (0.50 g, 3.6 mmol) in THF at 0 °C. The solution was allowed to warm to room temperature and stirred for 1 h, after which time the solvent was removed to afford a white powder of the lithium salt, 'hppLi(THF)_n'. This product was slurried in toluene and added to a solution of NbCl₅ (0.97 g, 3.6 mmol) in toluene at -78 °C. After stirring at ambient temperature for 20 h, the volatile components were removed and the product extracted with dichloromethane. Removal of the volatiles afforded crude 1 as a brown solid. Yield 0.24 g, 18% (see Fig. 1).

Download English Version:

https://daneshyari.com/en/article/1327926

Download Persian Version:

https://daneshyari.com/article/1327926

Daneshyari.com