FISEVIER

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Asymmetric transfer hydrogenation of ketones catalyzed by ruthenium(II) complexes bearing a chiral phosphinoferrocenyloxazoline ligand

Cesar A. Madrigal, Almudena García-Fernández, José Gimeno, Elena Lastra *

Departamento de Química Orgánica e Inorgánica, Instituto de Química Organometálica "Enrique Moles" (Unidad Asociada al C.S.I.C.), Universidad de Oviedo, 33006 Oviedo, Principado de Asturias, Spain

ARTICLE INFO

Article history:
Received 6 February 2008
Received in revised form 21 April 2008
Accepted 21 April 2008
Available online 29 April 2008

Keywords: Ruthenium(II) catalysts Asymmetric hydrogen transfer Ferrocenyl oxazoline Ferrocenylphosphine Indenyl complexes Arene complexes

ABSTRACT

The catalytic activity in asymmetric transfer hydrogenation of ketones using octahedral and half-sand-wich (η^5 -indenyl and η^6 -arene) ruthenium(II) complexes containing the chiral ligand (4S)-2-[(S_p)-2-(diphenylphosphino)ferrocenyl]-4-(isopropyl)oxazoline (FcPN) has been explored. Catalytic studies with complex fac-[RuCl₂{ $\eta^2(P,N)$ -FcPN}(PMe₃)₂] (1) show excellent TOF values (9600 h⁻¹). Experiments in the presence of free FcPN, which lead to an increase in conversion rates and ee values when the catalyst is complex [Ru(η^5 -C₉H₇){ $\kappa^2(P,N)$ -FcPN}(PPh₃)][PF₆] (4) have been carried out. The characterization of the new complexes mer-trans-[RuCl₂{ $P(OMe)_3$ }- $\kappa^2(P,N)$ -FcPN}] and of the water-soluble complexes fac- and mer-trans-[RuCl₂($P(A)_2$ - $\kappa^2(P,N)$ -FcPN}] is also reported.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Metal catalyzed asymmetric reduction of prochiral ketones has emerged as a very valuable synthetic tool to obtain optically pure substances [1,2]. Ruthenium complexes are among the most efficient catalysts in transfer hydrogenation of ketones [2] displaying excellent performances and asymmetric inductions [3–5]. In particular, ruthenium complexes containing phosphinoferrocenyloxazoline ligands (Fig. 1) featuring substituents in the oxazoline group close to the N donor atom, are especially attractive since they easily allow subtle modifications in the asymmetric induction of the ligand [6].

Besides the outstanding performance of Noyori's catalysts [5] containing chiral ligands with N–H functionalities, the five-coordinate complex [RuCl₂(PPh₃){ κ^2 -(P,N)-FcPN}] bearing the chiral ligand (4S)-2-[(S_p)-2-(diphenylphosphino)ferrocenyl]-4-(isopropyl)oxazoline (FcPN) (Fig. 1) has proven to be one of the best catalysts displaying high ee values and excellent conversions [7].

We have recently reported the diastereoselective synthesis of a number of ruthenium complexes containing the chiral ligand (S_p,S) -FcPN of two different types (Fig. 2): (a) six-coordinate complexes [8] of general formula $[RuCl_2L_2 \{\kappa^2-(P,N)-FcPN\}]$ (L = PMe₃

(1), PMe₂Ph (2), dppm (3)) and (b) chiral at metal η^5 -indenyl and η^6 -arene ruthenium(II) complexes [Ru(η^5 -C₉H₇)(PPh₃){ $\kappa^2(P,N)$ -FcPN}][PF₆] (4), [RuCl(η^5 -C₉H₇){ $\kappa^2(P,N)$ -FcPN}] (5) and [RuX(η^6 -arene){ $\kappa^2(P,N)$ -FcPN}][PF₆] (X = Cl (6), H (7); arene = p-cymene, 1,2,3,4-tetramethylbencene (8)) which have been isolated as single diastereoisomers (S_{Ru} for η^5 -indenyl complexes and R_{Ru} for η^6 -arene complexes) [9].

Herein, we describe the synthesis of new six-coordinate ruthenium(II) complexes $mer-trans-[RuCl_2\{P(OMe)_3\}_2\{\kappa^2(P,N)-FcPN\}]$ (9), $mer-trans-[RuCl_2(PTA)_2\{\kappa^2(P,N)-FcPN\}]$ (10a) and $fac-[RuCl_2(P-TA)_2\{\kappa^2(P,N)-FcPN\}]$ (10b) (PTA = 1,3,5-triaza-7-phosphadamantane). The catalytic activity of these complexes in asymmetric transfer hydrogenation of ketones along with that of six-coordinate 1–3 and half-sandwich 4–8 ruthenium(II) complexes previously reported by us [8,9], is also described.

2. Results and discussion

2.1. Synthesis of mer–trans-[RuCl₂{ $P(OMe)_3$ }₂{ $\kappa^2(P,N)$ -FcPN}] (**9**), mer–trans-[RuCl₂(PTA)₂($\kappa^2(P,N)$ -FcPN)] (**10a**) and fac-[RuCl₂(PTA)₂-($\kappa^2(P,N)$ -FcPN)] (**10b**)

Complex **9** has been prepared (85% yield) stereoselectively from the reaction of the five-coordinate complex $[RuCl_2(PPh_3)]$ $[\kappa^2(P,N)-FcPN]$ [11] with a light excess of $P(OMe)_3$ in CH_2Cl_2 at room temperature (Eq. 1):

^{*} Corresponding author. Tel.: +34 985102995; fax: +34 985103446. E-mail address: elb@uniovi.es (E. Lastra).

Fig. 1. (4S)-2- $[(S_p)$ -2-(diphenylphosphino)ferrocenyl]-4-(isopropyl)oxazoline (FcPN) ligand.

$$\begin{split} &[\text{RuCl}_2(\text{PPh}_3)\{\kappa^2(P,N)\text{-FcPN}\}] \\ &\xrightarrow[\text{CH}_2\text{cl}_2,\text{rt}]{\text{P(OMe)}_3}} &\textit{mer-trans-}[\text{RuCl}_2\{\text{P(OMe)}_3\}_2\{\kappa^2(P,N)\text{-FcPN}\}] \end{split} \tag{1}$$

Complex **9** is isolated as a yellow solid and has been characterized by elemental analyses and 1 H, 31 P{ 1 H} and 13 C{ 1 H} NMR spectroscopy which confirm the proposed formulation and stereochemistry. Thus, the 31 P{ 1 H} NMR spectrum displays three set of signals expected for a ABX system at 5.6 (2 J $_{PP}$ = 47 and 547 Hz), 117.8 (2 J $_{PP}$ = 65 and 547 Hz) and 136.0 (2 J $_{PP}$ = 47 and 65 Hz) ppm. The high 2 J $_{PP}$ value (547 Hz) arises from the *trans* dis-

Fig. 3. mer stereoisomers for complex 9.

phosphaadamantane (PTA) in CH_2Cl_2 at room temperature affords complex **10a** isolated as an orange solid in 60% yield (Eq. 2):

$$[RuCl_{2}(PPh_{3})\{\kappa^{2}(P,N)\text{-FcPN}\}] + PTA \xrightarrow{CH_{2}Cl_{2}, \text{ rt}} mer\text{-trans}-[RuCl_{2}(PTA)_{2}\{\kappa^{2}(P,N)\text{-FcPN}\}]$$

$$(10a)$$

$$CH_{3}OH$$

$$fac\text{-}[RuCl_{2}(PTA)_{2}\{\kappa^{2}(P,N)\text{-FcPN}\}]$$

$$(10b)$$

position of one of phosphite ligands with respect to the PPh₂ group of the FcPN ligand and is in accordance with a *mer* disposition of the phosphorus atoms. Although these data are consistent with three *mer* stereoisomers (Fig. 3A–C), we tentatively assign the structure *mer*–*trans* \mathbf{C} in analogy with that found in the related complex *mer*–*trans*-[RuCl₂(dppm){ $\kappa^2(P,N)$ -FcPN}] which has been determined by X-ray crystallography [10].

Following the same synthetic route of **9**, the complex *mertrans*-[RuCl₂(PTA)₂{ κ^2 (*P*,*N*)-FcPN}] (**10a**) has been obtained stere-oselectively. Thus, the reaction of complex [RuCl₂(PPh₃){ κ^2 (*P*, *N*)-FcPN}] [11] with the water-soluble phosphine 1,3,5-triaza-7-

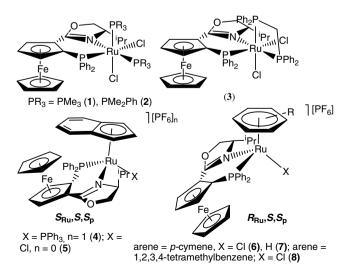


Fig. 2. Six-coordinated and half-sandwich ruthenium(II) complexes.

Complex **10a** has been characterized by elemental analyses and 1 H, 31 P{ 1 H} and 13 C{ 1 H}NMR spectroscopy. The 31 P{ 1 H} NMR spectrum of **10a**, which is similar to that of **9**, also exhibits a three set of signals (ABX system), namely, a triplet at 43.6 (2 J_{PP} = 28 Hz) and two doublet of doublets at -54.8 and -72.7 (2 J_{PP} = 319 and 28 Hz, respectively) ppm. As for complex **9**, the formation of the *mer*-*trans* isomer can be proposed (Fig. 4).

A solution of complex **10a** in methanol affords the isomer fac-[RuCl₂(PTA)₂{ $\kappa^2(P,N)$ -FcPN}] (**10b**) (Fig. 4) [12]. Elemental analysis and spectroscopic data are consistent with the proposed formulation and stereochemistry (see Section 4 for details). In particular, $^{31}P\{^{1}H\}$ NMR spectrum is very informative showing resonances expected for a ABX system i.e. a doublet of doublets for the PPh₂ group at 37.1 ppm ($^{2}J_{PP}$ = 34 and 33 Hz), and two triplets for the PTA phosphorous atoms at -30.8 ($^{2}J_{PP}$ = 33 Hz) and -35.0 ($^{2}J_{PP}$ = 34 Hz) ppm. These coupling constant values are consistent with a fac- disposition of the phosphorus atoms of the ligands. All other signals in the ^{1}H and $^{13}C\{^{1}H\}$ NMR spectra are also in accordance with the proposed structure.

2.2. Catalytic transfer hydrogenation of acetophenone

The reduction of acetophenone by propan-2-ol was used as a model. In a typical experiment, NaOH was added to a iPrOH solution of the ruthenium catalyst precursor (0.2 mol%) and the ketone at 82 °C and the reaction was monitored by gas chromatography.

Table 1 shows the catalytic activity of the studied complexes under optimized reaction conditions.

Octahedral complexes are, in general, better catalysts than half-sandwich complexes. The most remarkable features are (i) very rapid conversions are achieved with catalysts fac-[RuCl₂(P-Me₃)₂{ $\kappa^2(P,N)$ -FcPN}] (1) and fac-[RuCl₂(PMe₂Ph)₂{ $\kappa^2(P,N)$ -FcPN}] (2) (TOF 9600 and 7275 h⁻¹, respectively). The reaction becomes

Download English Version:

https://daneshyari.com/en/article/1327953

Download Persian Version:

https://daneshyari.com/article/1327953

Daneshyari.com