

Journal ofOrgano metallic Chemistry

Journal of Organometallic Chemistry 692 (2007) 286-294

www.elsevier.com/locate/jorganchem

Synthesis and catalytic properties of cationic palladium(II) and rhodium(I) complexes bearing diphosphinidinecyclobutene ligands

Rader S. Jensen ^{a,b}, Kazutoshi Umeda ^a, Masaaki Okazaki ^a, Fumiyuki Ozawa ^{a,*}, Masaaki Yoshifuji ^{b,1}

International Research Center for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan

Received 14 March 2006; received in revised form 13 April 2006; accepted 24 April 2006 Available online 1 September 2006

Abstract

Cationic palladium(II) and rhodium(I) complexes bearing 1,2-diaryl-3,4-bis[(2,4,6-tri-t-butylphenyl)phosphinidene]cyclobutene ligands (DPCB-Y) were prepared and their structures and catalytic activity were examined (aryl = phenyl (DPCB), 4-methoxyphenyl (DPCB-OMe), 4-(trifluoromethyl)phenyl (DPCB-CF₃)). The palladium complexes [Pd(MeCN)₂(DPCB-Y)]X₂ (X = OTf, BF₄, BAr₄ (Ar = 3,5-bis(trifluoromethyl)phenyl)) were prepared by the reactions of DPCB-Y with [Pd(MeCN)₄]X₂, which were generated from Pd(OAc)₂ and HX in MeCN. On the other hand, the rhodium complexes [Rh(MeCN)₂(DPCB-Y)]OTf were prepared by the treatment of [Rh(μ -Cl)(cyclooctene)₂]₂ with DPCB-Y in CH₂Cl₂, followed by treatment with AgOTf in the presence of MeCN. The cationic complexes catalyzed conjugate addition of benzyl carbamate to α , β -unsaturated ketones.

Keywords: Cationic complex; Palladium; Rhodium; Low-coordinated phosphorus ligand; Conjugate addition to enones

1. Introduction

There has been considerable recent interest in the coordination chemistry of low-coordinate phosphorus compounds due to their unique electronic properties, differing significantly from common tertiary phosphine ligands [1]. We recently found that the 1,2-diaryl-3,4-bis[(2,4,6-tri-t-butylphenyl)phosphinidene]cyclobutenes (DPCB-Y) shown in Chart 1 serve as particularly useful ligands [2]. Thus, while the DPCB-Y ligands structurally resemble dimine ligands, they possess extremely low-lying π^* orbitals located around the phosphorus, and exhibit a strong π -acceptor property towards transition metals [3]. We have documented that this property is useful for catalysis, lead-

ing to hitherto unknown reactivity and selectivity in hydroamination of dienes [4], direct conversion of allylic alcohols into N- and C-allylation products [5], (Z)-selective hydrosilylation of alkynes [6], cross-coupling reactions [7], and so

In effort to further explore the coordination behavior of this unique class of ligand and the reactivity of the resulting compounds, we prepared in this study a series of dicationic palladium(II) and cationic rhodium(I) complexes bearing DPCB–Y ligands listed in Chart 1. Dicationic palladium(II) complexes have proven to be efficient catalysts for copolymerization of CO and alkenes [8] and for conjugate addition of C- and N-nucleophiles to α,β -unsaturated carbonyl compounds [9,10]. For the latter catalysis, the electron-deficient nature of the dicationic palladium center should be of particular importance. Therefore, we have been interested in the construction of dicationic palladium complexes bearing DPCB–Y ligands with strong π -accepting ability. As described below, DPCB–Y ligands have

^{*} Corresponding author. Tel.: +81 774 76 3035; fax: +81 774 76 3039. E-mail address: ozawa@scl.kyoto-u.ac.jp (F. Ozawa).

¹ Present address: Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487-0336, USA.

Chart 1. Listing of DPCB-Y ligands and cationic complexes.

been successfully coordinated with the [Pd(MeCN)₂]²⁺ moiety, and the resulting complexes exhibit high catalytic performance towards conjugate addition of benzyl carbamate to enones [11].

2. Results and discussion

2.1. Preparation of $[Pd(MeCN)_2(DPCB-Y)](X)_2(1a-e)$

Palladium complexes having OTf as counter anions (1a-c) were synthesized by ligand displacement of $[Pd(MeCN)_4](OTf)_2$ with DPCB-Y in MeCN/Et₂O at room temperature. The starting complex was prepared from $Pd(OAc)_2$ and 2 equiv of TfOH in MeCN [12], and then combined with DPCB-Y without isolation. Complexes 1a-c were obtained as purple crystalline solids by recrystallization from MeCN/Et₂O. The DPCB complexes having BF₄ and BAr₄ (Ar = 3,5-(CF₃)₂C₆H₃) anions (1d and 1e, respectively) were similarly prepared by using the corresponding boric acids instead of TfOH. Complexes 1a-e were identified by IR and NMR spectroscopy and/ or elemental analysis.

The IR spectrum of 1a exhibited two $v_{C \equiv N}$ bands at 2332 and 2303 cm⁻¹; the absorption pattern was consistent with cis arrangement of the two MeCN ligands. In the 1H NMR spectrum recorded in CDCl₃, the methyl proton signal of MeCN appeared as a sharp singlet (δ 2.46) at -40 °C, but was significantly broadened and shifted upfield (ca. δ 2.1) at room temperature. Because complex 1d having BF₄⁻ anions showed a singlet in a coordination region (δ 2.39) even at room temperature, it is considered that 1a undergoes rapid ligand exchange between MeCN and OTf⁻ on an NMR time scale. The loss of MeCN from the complex was observed in the solid state as well. The

³¹P NMR signals appeared at δ 135.7 (**1a**), 127.3 (**1b**), and 143.1 (**1c**), respectively. The chemical shifts are 34–38, 28–31, and 8–12 ppm higher than that of free DPCB–Y [3], PdMe₂(DPCB–Y) [3], and [Pd(η ³-allyl)-(DPCB–Y)]OTf [5b], respectively.

2.2. Preparation of $[Rh(MeCN)_2(DPCB-Y)]OTf(2a-c)$ and related complexes (2d,e)

Rhodium DPCB–Y complexes 2a–e were prepared from $[Rh(\mu\text{-}Cl)(\text{olefin})_2]_2$ complexes $[(\text{olefin})_2 = (\text{cyclooctene})_2, 1,5$ -cyclooctadiene (cod), norbornadiene (nbd)] [13]. The cyclooctene ligands of $[Rh(\mu\text{-}Cl)(\text{cyclooctene})_2]_2$ were readily replaced by DPCB–Y in CH_2Cl_2 at room temperature to afford $[Rh(\mu\text{-}Cl)(DPCB\text{-}Y)]_2$ in quantitative yields, which were treated subsequently with AgOTf (1 equiv/Rh) in CH_2Cl_2 in the presence of MeCN to give the MeCN complexes 2a–c. On the other hand, since $[Rh(\mu\text{-}Cl)(\text{cod})]_2$ and $[Rh(\mu\text{-}Cl)(\text{nbd})]_2$ bearing diene ligands were unreactive towards direct ligand displacement, they were treated with DPCB–Y in the presence of AgOTf to provide [Rh(cod)(DPCB-Y)]OTf (2d,e) and [Rh(nbd)(DPCB)]OTf (2e). Complexes 2a–e were isolated as purple crystalline solids by recrystallization from CH_2Cl_2/Et_2O .

Unlike the palladium complex 1a, the rhodium analog 2a showed an MeCN proton signal in a coordination region without broadening (δ 2.35 at 20 °C), suggesting lower reactivity of 2a than 1a towards ligand exchange. The IR spectrum displayed two $v_{C} = N$ bands at 2316 and 2279 cm⁻¹. The ³¹P NMR signal appeared at δ 162.4 in CD₃CN; the chemical shift is lower than that of 1a (135.7), 2d (152.4), and 2e (153.1). It was further noted that the ${}^{1}J_{RhP}$ values are strongly dependent on trans influence: 2a (228 Hz), 2d (176 Hz), 2e (189 Hz).

2.3. X-ray structures

ORTEP drawings of **1a**, **2a**, and **2d** are given in Fig. 1. Selected bond distances and angles are listed in Table 1. Complex **1a** adopts a twisted square planar arrangement around palladium; the dihedral angle between the PdP₂ (A) and PdN₂ (G) planes is $6.78(3)^{\circ}$. The C \equiv N bonds of the MeCN ligands (2.059(3) Å) are somewhat shorter than those reported for [Pd(MeCN)₂(diphosphine)]²⁺ complexes (2.07-2.12 Å) [14]. Furthermore, the Pd-P distance (2.264(1) Å) is considerably shorter than that of [Pd(η^3 -allyl)(DPCB-Y)]OTf (2.322(1), 3.326(1) Å) [4].

It has been documented that the phenyl groups at the 1,2-positions of DPCB ligands (E and F in Fig. 1) tend to adopt a parallel orientation with respect to the diphosphinidenecyclobutene skeleton (B) upon coordination [3]. This is due to the occurrence of strong π -back donation from metal to DPCB ligand. Thus, DPCB complexes are stabilized by the formation of a widely spread π -conjugation system including the metal, diphosphinidenecyclobutene skeleton, and phenyl groups. Accordingly, dihedral angles between the DPCB skeleton (B) and the two benzene

Download English Version:

https://daneshyari.com/en/article/1328319

Download Persian Version:

https://daneshyari.com/article/1328319

<u>Daneshyari.com</u>