

Available online at www.sciencedirect.com

Journal of Organometallic Chemistry 691 (2006) 5655-5663

www.elsevier.com/locate/jorganchem

μ-Coordination chemistry of NO ligands: Adducts of *trans*-Mo(dmpe)₂(H)(NO) with lithium salts

Fupei Liang ^a, Helmut W. Schmalle ^b, Heinz Berke ^{b,*}

^a School of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, PR China ^b Anorganisch-Chemisches Institut der Universität Zürich, Winterthurer strasse 190, CH-8057 Zürich, Switzerland

Received 24 May 2006; received in revised form 11 August 2006; accepted 13 September 2006 Available online 19 September 2006

Abstract

Four adducts were formed by the reaction of *trans*-Mo(dmpe)₂(H)(NO) (1) (dmpe = bis(dimethylphosphino)ethane) and a respective lithium reagent to afford, [Mo(dmpe)₂(H)(NO)LiHBEt₃]₂ (2), [Mo(dmpe)₂(H)(NO)LiN(SiMe₃)₂]₂ (3), [Mo(dmpe)₂(H)(NO)]₃(LiBH₄)₂ (4), and {[Mo(dmpe)₂(H)(NO)]₂[LiBH₄]₅}_n (5). Structures 2–5 were characterized by crystal X-ray diffraction analyses. Structures 2 and 3 revealed to be dimers of the 1:1 adduct of 1 and the lithium salt. The two nitrosyl oxygen atoms in 2 are μ_2 -bridged connecting two separate LiHB(C₂H₅)₃ moieties, whereas in 3 these oxygen atoms exhibit a terminal coordination mode binding to two lithium ions of the dimeric [LiN(SiMe₃)₂]₂ unit. Structure 4 shows a discrete structure formed by two separate mononuclear LiBH₄ units being bridged by the nitrosyl oxygen atoms of three Mo(dmpe)₂(H)(NO) moieties. Structure 5 displays a complicated chain structure with differently coordinated lithium centers, various types of bridging BH₄ and bridging nitrosyl groups. © 2006 Elsevier B.V. All rights reserved.

Keywords: Hydride; Nitrosyl binding; Molybdenum; Lithium; Adduct formation

1. Introduction

The Lewis basicity of coordinated carbonyl ligands has been well documented [1]. In contrast, studies on the interaction of bound NO acting as a Lewis base are relatively rare [2]. The first investigation on the Lewis basicity of the NO ligand was made by Legzdins and his coworkers. They studied the interaction of CpCr(NO)₂Cl and $CpM(CO)_2(NO)$ (M = Cr, Mo, W) with R_3Ln (R = Cp, Cp'; Ln = Sm, Er, Yb, Ho, Dy) in solution by IR and NMR spectroscopy [3]. The Lewis basicity of the nitrosyl was indicated by IR and ¹H NMR spectroscopic changes accompanied by lowering of the v(NO) frequencies, which occur upon adduct formation. Similar spectroscopic methods were used in the study of the interaction of Cp₃Sm in $CpCr(CO)_2(NO),$ solution with $[CpFe(NO)]_2$ and $Cp'_{3}Mn_{3}(NO)_{4}$ that stand for three kinds of ligation modes of NO groups, namely, terminal, μ_2 -bridging and μ_3 -bridging, respectively. Based on the IR spectroscopic changes in the adduct formation, the Lewis basicity of the NO ligand was shown to have the order of terminal NO $> \mu_{2}$ -NO > μ_3 -NO [4]. The MgI₂ complexes of CpM(NO)(CH₂-SiMe₃) have been isolated in analytically pure form with the compositions of $[CpM(NO)(CH_2SiMe_3)_2]_2 \cdot MgI_2 \cdot Et_2O$ (M = Mo, W) [5]. The existences of the isonitrosyl linkage $(NO \rightarrow Mg)$ in both complexes were manifested by IR spectroscopy and partially by X-ray crystallographic analyses of the complexes. The analogous complex CpMo- $(NO)I_2 \cdot C_4H_6Mg \cdot 1/2(Et_2O)$ has also been isolated and characterized.[6] The crystal structure of the nitrosyl ligand/Lewis acid adduct $CpRe(NO \cdot BCl_3)$ (PPh₃)-(SiMe₂Cl) has been determined [7]. The Re-N bond is distinctly shortened and the N-O bond revealed lengthening upon the formation of the adduct. In dinitrosyl complexes $Re(H)(NO)_2(PR_3)_2$ ($R = {}^{i}Pr$, Cy), one NO group was found to be capable of coordinating to one or two BF₃ molecules, and more interesting, the interaction of a second

^{*} Corresponding author. Tel.: +41 1 635 46 80; fax: +41 1 635 68 02. *E-mail address:* hberke@aci.unizh.ch (H. Berke).

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2006.09.016

BF₃ molecule caused bending of the NO group, thus providing a new coordination site in the metal sphere [8]. The coordination of the nitrosyl group to the lithium ions in the compounds $[Cp^*Mo(NO)(CH_2SiMe_3)]$ (=CHSiMe_3)]₂[Li₂(THF)₃], $[(\eta^5, \eta^1-C_5Me_4CH_2)Mo(NO)$ (CH₂SiMe₃)₂][Li(THF)₃] and {[Cp^{*}Mo(NO)(CH₂SiMe₃)₂]-[Li(THF)]}₂ have been unambiguously confirmed by Xray crystallographic analyses [9]. We have previously reported the structural characterizations of the compounds formed by the chloride *trans*-Mo(dmpe)₂(Cl)-(NO) (dmpe = bis(dimethylphosphino)ethane) and lithium reagents [10]. Extending these investigations, we present here structural characterizations of the adducts of the hydride *trans*-Mo(dmpe)₂(H)(NO) (1) and various lithium salts.

2. Results and discussion

2.1. Preparation and characterization of complex 2–5

Complex 2: Treatment of 1 with equimolar lithium triethylborohydride in diethyl ether afforded the 1/LiHBEt₃ adduct [Mo(dmpe)₂(H)(NO)LiHBEt₃]₂ (2), which was isolated as well-defined crystals in 68% yield after diffusion of pentane into a concentrated toluene solution of the reaction mixture (Eq. (1)). The IR spectrum of **2** as a Nujol mull showed an v(NO) absorption at 1520 cm⁻¹ of medium intensity. This NO stretching frequency is 23 cm^{-1} lower than the corresponding one of the precursor 1 (1543 cm^{-1} in Nujol), suggesting interaction of the lithium cation at the nitrosyl oxygen atom. The ¹H and ¹³C NMR spectra of **2** in Et₂O- d_{10} display the expected resonances corresponding to the Mo(dmpe)₂H(NO) and LiHBEt₃ moieties. The signal for the Mo-H proton is observed at -4.75 ppm. This resonance is a little upfield from the related resonance of 1. However, this effect is believed to be more due to a solvent effect rather than a consequence of the interaction with the lithium ion. The ³¹P resonance is found at 44.2 ppm, which is the same as the spectrum of the precursor 1. The ¹¹B NMR spectrum shows a singlet at -13.6 ppm, which is quite different from that observed in the adduct of $[Mo(dmpe)_2(Cl)(NO)LiHBEt_3]_n$ [10]. Despite this observation, the ⁷Li spectra of both compounds are comparable, a singlet at 2.3 ppm is observed for **2**

$$z \cdot x \operatorname{Mo}(\operatorname{dmpe})_{2}(\operatorname{H})(\operatorname{NO}) + z \cdot y \operatorname{LiX} \rightarrow \{[\operatorname{Mo}(\operatorname{dmpe})_{2}(\operatorname{H})(\operatorname{NO})]_{x}(\operatorname{LiX})_{y}\}_{z}$$
(1)
$$2 : x = y = 1; \ z = 2; \ X = \operatorname{HBEt}_{3}$$

$$3 : x = y = 1; \ z = 2; \ X = \operatorname{N}(\operatorname{SiMe}_{3})_{2}$$

$$4 : x = 3; \ y = 2; \ z = 1; \ X = \operatorname{BH}_{4}$$

$$5 : x = 2; \ y = 5; \ z = \infty; \ X = \operatorname{BH}_{4}$$

Complex 3: Reaction of 1 with 1 equiv of lithium bis(trimethylsilyl)amide in diethyl ether at room temperature and recrystallization from diethyl ether afforded yellow crystals of $[Mo(dmpe)_2(H)(NO)LiN(SiMe_3)_2]_2$ (3) in 81% yield (Eq. (1)). 3 has been characterized by elemental analysis, IR and NMR. The analysis data are in good agreement with the 1:1 stoichiometry of 1/LiN(SiMe₃)₂. The IR spectrum as a Nujol mull shows the nitrosyl stretching mode at 1528 cm^{-1} , which is 15 cm^{-1} lower than that found for precursor 1. The extent of the decrease of v_{NO} is for 3 apparently smaller than that of 2, which is the consequence of the non-bridging coordination mode of the nitrosyl oxygen in 3 (vide infra). The ¹H and ¹³C NMR spectra in Et₂O- d_{10} display the expected resonances corresponding to the Mo(dmpe)₂H(NO) and LiN(SiMe₃)₂ moieties. The chemical shifts of -4.75 ppm for the Mo-H proton resonance (¹H NMR) and 44.7 ppm for the ³¹P resonance (³¹P NMR) are comparable to those exhibited by **2**. In the ⁷Li NMR spectrum the ⁷Li resonance appears at 4.0 ppm.

Complex 4: Treatment of 1 with LiBH₄ at room temperature in diethyl ether afforded the adduct $[Mo(dmpe)_2(H) (NO)_{3}(LiBH_{4})_{2}$ (4) with a 1/LiBH₄ ratio of 3:2 (Eq. (1)). It was found that this stoichiometry is independent on the 1/LiBH₄ ratio employed in the reaction. Reactions of **1** with 1 equiv or with 6 equiv of LiBH₄ produced the same compound of 4. In a typical reaction, 4 was isolated as yellow crystals in 67% yield. The IR spectrum of 4 as Nujol mull shows the nitrosyl stretching mode at 1497 cm^{-1} . This value is 44 cm^{-1} lower than that of the precursor **1**. It is noteworthy that the extent of this v_{NO} shift is significantly greater than those exhibited by 2 and 3, which suggests an even stronger NO-Li interaction in 4. Surprisingly the ¹H NMR spectrum of 4 displays in Et_2O-d_{10} among others characteristic resonances at -0.22 to -0.70 ppm for the BH_4^- group and a quintet at -4.78 ppm for the Mo-H resonance. A broad quartet at -2.95 ppm with a coupling constant of 80.4 Hz is assigned to the previously reported borohydride *trans*-Mo(η¹-BH₄)(dmpe)₂(NO) [11]. Accordingly, the ${}^{31}P{}^{1}H$ and ${}^{11}B{}^{1}H$ NMR spectra of 4 show also additional resonances corresponding to the borohydride species (36.5 ppm and -43.0 ppm, respectively). This indicates the appearance of *trans*-Mo(η^1 -BH₄)(dmpe)₂ (NO) in the diethyl ether solution of 4. We assume that 4 dissociates in Et₂O into the corresponding components of the hydride 1 and LiBH₄. And then hydride 1 is assumed to react with LiBH₄ in an equilibrium to form slowly the borohydride and LiH (Eq. (2)). This assumption could be confirmed by NMR. The ¹H and ³¹P NMR spectra recorded from the mixture of 1 and LiBH₄ in Et_2O-d_{10} show indeed the occurrence of the borohydride trans- $Mo(\eta^{1}-BH_{4})(dmpe)_{2}(NO)$. The ⁷Li{¹H} NMR spectrum of 4 in Et₂O- d_{10} displays only a singlet at 3.2 ppm for LiBH₄ (3.3 ppm, recorded in Et₂O- d_{10}). The other product LiH could not be traced due to its insolubility in ether.

$$1 + \text{LiBH}_4 \rightarrow trans-\text{Mo}(\eta^1-\text{BH}_4)(\text{dmpe})_2(\text{NO}) + \text{LiH}$$
 (2)

Complex 5: Reaction of the chloride *trans*-Mo(d- $mpe)_2(Cl)(NO)$ with 5 equiv of LiBH₄ and 8 equiv of quinuclidine in Et₂O at room temperature for four days and subsequent treatment produced unexpectedly a poly-

Download English Version:

https://daneshyari.com/en/article/1328389

Download Persian Version:

https://daneshyari.com/article/1328389

Daneshyari.com