

Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

$K_3Ln[OB(OH)_2]_2[HOPO_3]_2$ (Ln=Yb, Lu): Layered rare-earth dihydrogen borate monohydrogen phosphates

Yan Zhou^{a,b}, Stefan Hoffmann^a, Ya-Xi Huang^b, Yurii Prots^a, Walter Schnelle^a, Prashanth W. Menezes^a, Wilder Carrillo-Cabrera^a, Jörg Sichelschmidt^a, Jin-Xiao Mi^b, Rüdiger Kniep^{a,*}

^a Max-Planck-Institut f
ür Chemische Physik fester Stoffe, N
öthnitzer Str. 40, 01187 Dresden, Germany
^b Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, PR China

ARTICLE INFO

Article history: Received 13 December 2010 Received in revised form 7 April 2011 Accepted 10 April 2011 Available online 16 April 2011

Keywords: Rare earth Borate phosphate Layered structure Magnetic properties EPR spectroscopy

1. Introduction

Recent research in the field of borophosphates has revealed that mild hydrothermal route is a promising synthetic approach in the exploration of the systems M_xO_y -B₂O₃-P₂O₅-(H₂O) (M=metal). This strategy has already resulted in numerous compounds with new crystal structures [1]. So far, this route of preparation was restricted to M representing main-group and/or transition elements. In contrast, our efforts are now focused on systems containing rare-earth elements. Up to now, the only reported examples for a rare-earth intermediates are given by the general formula $Ln_7O_6[BO_3][PO_4]_2$, (Ln=rare-earth element), prepared by solid state reaction at high temperatures [2].

Herein, we report on the synthesis and structure as well as physical characterization of two new hydrated rare-earth borate phosphates, which are obtained for the first time under mild hydrothermal synthesis conditions.

2. Experimental details

2.1. Hydrothermal synthesis

 $K_3Yb[OB(OH)_2]_2[HOPO_3]_2$: Initially, 0.591 g Yb_2O_3 was dissolved in 1 mL concentrated HCl. Then, 1.8334 g $K_2B_4O_7\cdot 4H_2O$,

* Corresponding author. Fax: +49 351 4646 3002.

E-mail address: kniep@cpfs.mpg.de (R. Kniep).

ABSTRACT

Two isotypic layered rare-earth borate phosphates, $K_3Ln[OB(OH)_2]_2[HOPO_3]_2$ (Ln=Yb, Lu), were synthesized hydrothermally and the crystal structures were determined by single-crystal X-ray diffraction ($R\bar{3}$, Z=3, Yb: a=5.6809(2) Å, c=36.594(5) Å, V=1022.8(2) Å³, Lu: a=5.6668(2) Å, c=36.692(2) Å, V=1020.4(1) Å³). The crystal structure can be described in terms of stacking of Glaserite-type slabs consisting of LnO_6 octahedra interlinked by phosphate tetrahedra and additional layers of $[OB(OH)_2]^-$ separated by K⁺ ions. Field and temperature dependent measurements of the magnetic susceptibility of the Yb-compound revealed Curie–Weiss paramagnetic behavior above 120 K ($\mu_{eff}=4.7 \mu_B$). Magnetic ordering was not observed down to 1.8 K.

© 2011 Elsevier Inc. All rights reserved.

3.658 g K_2 HPO₄ and 4 mL H₂O (molar ratio of K:Yb:B:P=18:1:8:7) were mixed with the above solution, and the pH value was adjusted to 7 using 0.75 mL concentrated HCl. All starting materials used in the experiments were of analytical grade and were used without further purification. The mixture was transferred to a Teflon vessel with a cover, which was placed in a steel autoclave. The synthesis was conducted at 453 K for 5 days. After that time the autoclave was directly taken out of the hot oven. The product was filtered and washed with distilled water several times and dried at 323 K for 8 h. K₃Lu[OB(OH)₂]₂[HOPO₃]₂: 1.7340 g LuCl₃ · 6H₂O, 1.8336 g K₂B₄O₇ · 4H₂O and 3.6372 g K₂HPO₄ were dissolved in 4 mL water and the pH value was adjusted to 6-7 using concentrated HCl. The suspension was transferred into a Teflon autoclave and maintained at 453 K for 3 days. Finally, the autoclave was directly taken out of the oven. Crystals settled at the bottom of the autoclave were washed with distilled water several times and dried at 323 K for 8 h.

2.2. Characterization

The chemical compositions of the products were determined using both inductively coupled plasma-optical emission spectrometry (ICP-OES) on a VARIAN Vista RL instrument and energy-dispersive X-ray spectroscopy (EDXS) carried out on a PHILIPS XL 30. ICP-OES results show that the molar ratio is K:Yb:B:P=2.45:1:1.47:1.78(calc: 3:1:2:2) for K₃Yb[OB(OH)₂]₂[HOPO₃]₂, which suggests the presence of impurities not detected by powder X-ray diffraction (PXRD, Fig. S2). EDXS on three different crystals gave an average

^{0022-4596/\$ -} see front matter \circledcirc 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2011.04.023

molar ratio of K:Yb:P=2.83:1:2.31. For K₃Lu[OB(OH)₂]₂[HOPO₃]₂ a molar ratio of K:Lu:B:P=2.95:1:1.93:1.97 is determined by ICP-OES, which is close to the ratio derived from single-crystal structure determination.

Thermal investigations (DTA/TG) were carried out in argon atmosphere with heating rates of 5 K/min up to 1273 K (NETZSCH STA 449). The FT-IR spectrum was recorded at room temperature using a Spectrum 100 Optical (PerkinElmer) with universal ATR sampling accessory. The magnetization measurements were performed on a SQUID-magnetometer (Quantum Design, MPMS XL-7) in the temperature range of 1.8–400 K using various external magnetic fields.

2.3. Crystal structure determination

Hexagonal platelets (Fig. S1) of the isotypic compounds $K_3Ln[OB(OH)_2]_2[HOPO_3]_2$ (*Ln*=Yb, Lu) were selected under a light microscope. Single-crystal X-ray diffraction data were collected on a Rigaku AFC7 (Mercury CCD detector) diffractometer using graphite-monochromated Mo K α radiation (λ =0.71073 Å) at a temperature of 295 K. The isotypic structures were solved by direct methods and refined using the programs SHELXS-97 [3] and SHELXL-97 [3] included in the program suite WinGX [4]. The crystal structure of K₃Lu[OB(OH)₂]₂[HOPO₃]₂ was refined as a twin. The lattice parameters were determined by PXRD using LaB₆ as internal standard [5]. The final refinement by full-matrix leastsquares methods led to: $K_3Yb[OB(OH)_2]_2[HOPO_3]_2$, M=603.95g/mol, trigonal, $R\overline{3}$ (No. 148), a=5.6809(2) Å, c=36.594(5) Å, V=1022.8(2) Å³, Z=3, 2119 measured and 757 independent reflections, R1=0.023 and wR2=0.054 for all data and K₃Lu[O- $B(OH)_2]_2[HOPO_3]_2$, M=605.9 g/mol, trigonal, $R\overline{3}$, (No. 148), *a*=5.6668(2) Å, *c*=36.692(2) Å, *V*=1020.4(1) Å³, *Z*=3, 3185 measured and 789 independent reflections, R1=0.027 and wR2=0.050 for all data. Further details are summarized in Table 1. Atomic positions and displacement parameters for K₃Yb[OB(OH)₂]₂[HOPO₃]₂ are given in Table 2. The crystallographic data were deposited at FIZ Karlsruhe under the CSD number 422902 (K₃Yb[OB(OH)₂]₂[HOPO₃]₂) and 422903 (K₃Lu[OB $(OH)_2]_2[HOPO_3]_2).$

3. Results and discussion

3.1. Crystal structure

Since both crystal structures are isostructural only the Yb-compound shown in Fig. 1 is discussed in detail. Ytterbium exhibits an octahedral coordination with a unique Yb-O distance of 2.202(2)Å (cf. selected bond lengths in Table 3) and two slightly different O-Yb-O angles of 88.2° and 91.8° (site symmetry C_{3i}). Phosphorous is in a distorted tetrahedral coordination of oxygen. Three corners of each tetrahedron are shared with three YbO₆ octahedra, and the corresponding P–O1 distances amount to 1.530(2) Å $(3 \times , P$ site symmetry 3). A longer distance (1.551(4)Å) is observed for the remaining vertex (O2). These two types of polyhedra form a common 2D arrangement characteristic for the mineral Glaserite (Aphthitalite) [6], K₃Na(SO₄)₂. This structure type is adopted by a number of rare-earth compounds with the general formula $A_3Ln(XO_4)_2$ (A=Na, K, Ln=rareearth element, X=P, V, As). The Glaserite-type layers can show different degrees of distortion [7]. The terminal P-O distance in the crystal structure of the Glaserite analog $K_3Lu(PO_4)_2$ [8] amounts to 1.505 Å and is shorter than the distance to the bridging oxygen atoms reflecting a general trend in the crystal chemistry of phosphates [9]. The three short O2 · · · O3 distances

Table 2

Fractional atomic coordinates and equivalent displacement parameters (\hat{A}^2) for $K_3Yb[OB(OH)_2]_2[HOPO_3]_2$.

-					
Atom	Wyckoff position	x	у	Ζ	U _{eq}
Yb1	3a	0	0	0	0.011(1)
K1	3 <i>b</i>	1/3	2/3	1/6	0.022(1)
K2	6 <i>c</i>	1/3	2/3	0.0574(1)	0.024(1)
P1	6 <i>c</i>	2/3	1/3	0.0468(1)	0.010(1)
B1	6 <i>c</i>	0	0	0.1159 (2)	0.018(1)
01	18f	0.3713(4)	0.1840(5)	0.0336(1)	0.019(1)
02	6 <i>c</i>	2/3	1/3	0.0891(1)	0.015(1)
03	18f	0.2093(5)	0.2637(5)	0.1167 (1)	0.023(1)

Table 1

Crystal structure data and refinement parameters for K₃Ln[OB(OH)₂]₂[HOPO₃]₂ (Ln=Yb, Lu).

Empirical formula	B ₂ K ₃ Yb O ₁₄ P ₂ H ₆	B_2 K ₃ Lu O ₁₄ P ₂ H ₆ ^a	
Formula weight	603.95	605.9	
(g/mol)	205	205	
Temperature (K)	295	295	
Crystal size (mm ³)	$0.080 \times 0.080 \times 0.010$	$0.065 \times 0.065 \times 0.008$	
Radiation (Å)	Μο Κα, 0.71073	Μο Κα, 0.71073	
Crystal system, space group	Trigonal, R3 (No. 148)	Trigonal, R3 (No. 148)	
Unit cell parameters ^b	a=5.6809(2) Å	a=5.6668(2) Å	
	c=36.594(5) Å	c = 36.692(2) Å	
	$V = 1022.8(2) \text{ Å}^3$	$V = 1020.4(1) \text{ Å}^3$	
Ζ	3	3	
Calculated density ρ_{calc} (g/cm ³)	2.942	2.958	
Absorption coefficient μ (mm ⁻¹)	8.079	8.479	
F(000)	855	858	
θ range for data collection	3.34° to 32.08°	3.33° to 32.23°	
Limiting indices	$-8 \le h \le 6, -4 \le k \le 6, -52 \le l \le 53$	$-6 \le h \le 8, -8 \le k \le 6, -52 \le l \le 52$	
Reflections collected/unique	2119/757 [<i>R</i> (int)=0.0270]	3185/789 [<i>R</i> (int)=0.0373]	
Goodness-of fit on F ²	1.067	1.076	
R1,wR2 $[I > 2\sigma(I)]$	0.0213, 0.0534	0.0238, 0.0497	
R1,wR2 (all data)	0.0227, 0.0536	0.0267, 0.0504	
Largest diff. peak and hole	0.838 and $-1.412 \text{ e/}\text{\AA}^3$	0.967 and -2.142 e/Å-3	

^a K₃Lu[OB(OH)₂]₂[HOPO₃]₂ refined as twin with 110/0-10/001 matrix and BASF=0.53.

^b Refined from X-ray powder diffraction pattern with LaB₆ as internal standard using the program WinCSD [5].

Download English Version:

https://daneshyari.com/en/article/1329131

Download Persian Version:

https://daneshyari.com/article/1329131

Daneshyari.com