ELSEVIER

Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

$[Hg_5O_2(OH)_4][(UO_2)_2(AsO_4)_2]$: A complex mercury(II) uranyl arsenate

Yaqin Yu^c, Kai Jiang^c, Thomas E. Albrecht-Schmitt^{a,b,c,*}

- ^a Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
- ^b Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
- ^c Department of Chemistry and Biochemistry, and Center for Actinide Science, Auburn University, Auburn, Alabama 36849, USA

ARTICLE INFO

Article history:
Received 12 December 2008
Received in revised form
17 March 2009
Accepted 26 March 2009
Available online 8 April 2009

Keywords: Uranyl arsenate Transition metal uranyl arsenate Hydrothermal synthesis and crystal growth

ABSTRACT

Under mild hydrothermal conditions $UO_2(NO_3)_2 \cdot 6H_2O$, $Hg_2(NO_3)_2 \cdot 2H_2O$, and $Na_2HAsO_4 \cdot 7H_2O$ react to form $[Hg_5O_2(OH)_4][(UO_2)_2(AsO_4)_2]$ (**HgUAs-1**). Single crystal X-ray diffraction experiments reveal that **HgUAs-1** possesses a pseudo-layered structure consisting of two types of layers: ${}^2_\infty[Hg_5O_2(OH)_4]^{2^+}$ and ${}^2_\infty[(UO_2)_2(AsO_4)_2]^{2^-}$. The ${}^2_\infty[Hg_5O_2(OH)_4]^{2^+}$ layers are complex, and contain three crystallographically unique Hg centers. The coordination environments and bond-valence sum calculations indicate that the Hg centers are divalent. The ${}^2_\infty[(UO_2)_2(AsO_4)_2]^{2^-}$ layers belong to the Johannite topological family. The ${}^2_\infty[Hg_5O_2(OH)_4]^{2^+}$ and ${}^2_\infty[(UO_2)_2(AsO_4)_2]^{2^-}$ layers are linked to each other through μ_2 -O bridges that include $Hg\cdots O=U=0$ interactions.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Uranyl arsenates display remarkably rich crystal chemistry that can be attributed in part to the structural versatility of U(VI), which generally occurs as tetragonal, pentagonal, and hexagonal bipyramids [1–8]. The formation of extended structures containing uranyl polyhedra usually arises only through the equatorial positions owing to the terminal nature of the apical positions, which typically yields two-dimensional structures [9]. There are some recent examples of interactions between uranyl cations that make use of the apical oxygen atoms, but these are exceedingly rare [10,11].

Of late there has been interest in expanding structural diversity and physico-chemical properties of uranyl phosphates and arsenates through the incorporation of main group elements and transition metals [12–14]. One possibility is that the second metal center could display mixed-valence on a stoichiometric level, but this has yet to be observed in compounds in this class. However, the occurrence of this feature might lead to versatile functional materials with atypical magnetic behavior [15,16]. An unusual and understudied choice for a metal that might display this behavior is mercury. Only a few crystal structures of synthetic Hg(I) compounds have been reported (e.g. $(\mathrm{Hg_2})_2(\mathrm{OH})(\mathrm{NO_3})_3$ and $(\mathrm{Hg_2})_5(\mathrm{OH})_4(\mathrm{NO_3})_6$) [17,18], several Hg(I) minerals are also known [19,20]. The mixed-valence compounds $\mathrm{Hg_4O_2(NO_3)_2}$, $\mathrm{Hg_2^I(OH)(NO_3) \cdot Hg^{II}O}$, and $(\mathrm{Hg_2})\mathrm{Hg(OH)_2(CIO_4)_2}$ have also been

E-mail address: albreth@auburn.edu (T.E. Albrecht-Schmitt).

structurally characterized [21,22]. Hg^I compounds typically contain [Hg₂]²⁺ units that possess a Hg–Hg single bond with a bong length of approximate 2.53 Å [23], which allows one to partially distinguish Hg(I) from Hg(II) compounds [23]. Some of these aforementioned structural features have been combined into a single compound, namely [Hg₅O₂(OH)₄][(UO₂)₂(AsO₄)₂] (**HgUAs-1**), which is discussed in this work.

2. Experimental

Synthesis: UO₂(NO₃)₂·6H₂O (98%, Alfa Aesar), Hg₂(NO₃)₂·2H₂O (98.5%, Baker), Na₂HAsO₄·7H₂O (99.9%, Baker), and (CH₃)₄NCl (97%, Aldrich), were used as received. Reactions were carried out in PTFE-lined Parr 4749 autoclaves with a 23 mL internal volume. Distilled and millipore filtered water with a resistance of 18.2 M Ω cm was used in the reactions. Standard precautions were performed for handling radioactive materials during work with UO₂(NO₃)₂·6H₂O and the products of the reactions. Semi-quantitative EDX analysis was performed using a JEOL 7000F.

[Hg₅O₂(OH)₄][(UO₂)₂(AsO₄)₂] (**HgUAs-1**). UO₂(NO₃)₂ · 6H₂O (0.194 g, 0.388 mmol), Na₂HAsO₄ · 7H₂O (0.0612 g, 0.196 mmol), Hg₂(NO₃)₂ · 2H₂O (0.220 g, 0.695 mmol), (CH₃)₄NCl (0.0215 g, 0.196 mmol), and 2 mL of water were loaded into a 23 mL autoclave. The autoclave was sealed and heated to 200 °C in a box furnace for three days. The autoclave was then cooled at an average rate of 9 °C/h to 35 °C. Initial pH = 1.63 and ending pH = 1.95. Yellow blocks of **HgUAs-1** were recovered and thoroughly washed with water, then rinsed with methanol, and

^{*}Corresponding author at: Department of Chemistry and Biochemistry, and Center for Actinide Science, Auburn University, Auburn, Alabama 36849, USA. Fax: +13348446959.

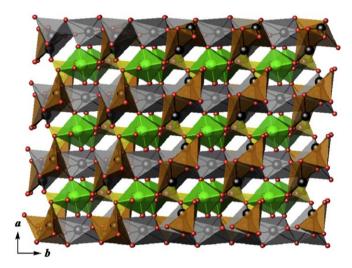
allowed to dry. Yield: 146 mg, 19.4% based on uranium. EDX analysis confirmed the presence of Hg, U, and As in the crystals.

Crystallographic studies: A single crystal of **HgUAs-1** was mounted on a thin glass fiber and optically aligned on a Bruker APEX CCD X-ray diffractometer using a digital camera. Initial intensity measurements were performed using graphite monochromated MoK α ($\lambda=0.71073$ Å) radiation from a sealed tube and monocapillary collimator. SMART (v 5.624) was used for preliminary determination of the cell constants and data collection control. The intensities of reflections of a sphere were collected by a combination of three sets of exposures (frames). Each set had a different ϕ angle for the crystal and each exposure covered a range of 0.3° in ω . A total of 1800 frames were collected with an exposure time per frame of 30 s.

For HgUAs-1, determination of integrated intensities and global refinement were performed with the Bruker SAINT (v 6.02) software package using a narrow-frame integration algorithm. A face-indexed numerical absorption correction was initially applied using XPREP, where individual shells of unmerged data were corrected [24]. The absorption coefficient of this compound is very large, and the moderate residuals are probably the result of a somewhat inadequate absorption correction. These files were subsequently treated with a semi-empirical absorption correction by SADABS [25]. The program suite SHELXTL (v 6.12) was used for space group determination (XPREP), direct methods structure solution (XS), and least-squares refinement (XL) [24]. The final refinement included anisotropic displacement parameters for all atoms. Some crystallographic details are given in Table 1. Additional details can be found in the Supporting information.

Raman spectroscopy: The Raman spectrum of **HgUAs-1** was acquired from a single crystal using a Renishaw inVia Confocal Raman microscope with a 514 nm Ar⁺ laser.

Fluorescence spectroscopy: The fluorescence spectrum of **HgUAs-1** was acquired using a PI Acton spectrometer (SpectraPro SP 2356, Acton, NJ) that is connected to the side port of an epifluorescence microscope (Nikon TE-2000U, Japan). The emission signal was recorded by a back-illuminated digital CCD camera (PI Acton PIXIS:400B, Acton, NJ) operated by a PC. For all the three compounds examined, the excitation was generated by a mercury lamp (X-Cite 120, EXFO, Ontario, Canada) filtered by a band-pass filter at 450–490 nm. The emission signal was filtered by a long-pass filter with a cutoff wavelength of 515 nm.


 $\label{eq:Table 1} \begin{tabular}{ll} \textbf{Table 1} \\ \textbf{Crystallographic data for } [Hg_5O_2(OH)_4][(UO_2)_2(AsO_4)_2] \end{tabular} \begin{tabular}{ll} \textbf{(HgUAs-1)}. \\ \end{tabular}$

$[Hg_5O_2(OH)_4][(UO_2)_2(AsO_4)_2]$
1923
Yellow, block
P 1
6.8229(5)
6.8795(5)
9.5959(6)
109.456(1)
104.834(1)
93.867(1)
404.74(5)
1
193
0.71073
28.30
7.864
713.12
0.0555
0.1349

^a $R(F) = \sum ||F_o| - |F_c|| / \sum |F_o|$.

3. Results and discussion

Structure of $[Hg_5O_2(OH)_4][(UO_2)_2(AsO_4)_2]$ (HgUAs-1): **HgUAs-1** possesses a pseudo-layered structure with $_{\infty}^{2}[Hg_{5}O_{2}(OH)_{4}]^{2+}$ and $\sum_{\infty}^{2}[(UO_2)_2(AsO_4)_2]^{2-}$ layers. The latter layers consist of UO_7 pentagonal bipyramids that are linked into edge-sharing dimers that are joined together by AsO_4^{3-} tetrahedra. The former layers formulated as ${}_{\infty}^{2}[Hg_{5}O_{2}(OH)_{4}]^{2+}$ consists of three crystallographically unique mercury centers and a mixture of oxo and hydroxo groups. As shown in Fig. 1, the compact three-dimensional structure is constructed by the joining of these layers by bridging oxo atoms, which provide linkages for As(1)...Hg(3), $Hg(2)\cdots U(1)$, $As(1)\cdots Hg(3)$, and $U(1)\cdots Hg(3)$. Fig. 2 shows the interactions of the UO_2^{2+} cations and Hg(1) that provides one method for interconnecting the layers. Previous reports show that the apical (uranyl) vertices of the uranyl bipyramids can be shared with polyhedra containing higher-valence cations, even though this would over-bond the oxygen position [13]. However, long uranyl oxo interactions with interlayer cations are well

Fig. 1. A view of the three-dimensional structure of $[Hg_5O_2(OH)_4][(UO_2)_2(AsO_4)_2]$ (**HgUAs-1**). UO_7 pentagonal bipyramids are shown in green, Hg polyhedra are shown in gray and brown. AsO_4 tetrahedra are shown in yellow. [For interpretation of the references to color in this figure legend, the reader is referred to the webversion of this article.]

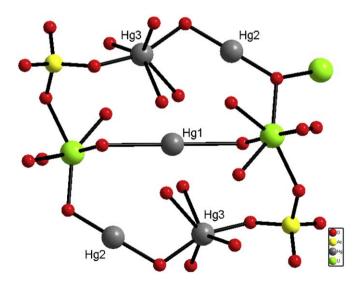


Fig. 2. A depiction of the coordination environments for mercury in $[Hg_5O_2(OH)_4][(UO_2)_2(AsO_4)_2]$ (HgUAs-1).

^b $R_w(F_o^2) = \left[\sum \left[w(F_o^2 - F_c^2)^2\right]/\sum wF_o^4\right]^{1/2}$.

Download English Version:

https://daneshyari.com/en/article/1329259

Download Persian Version:

https://daneshyari.com/article/1329259

<u>Daneshyari.com</u>