

Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

Porous layered and open-framework mixed-valence copper tellurites

Mishel R. Markovski, Oleg I. Siidra^{*}, Roman A. Kayukov, Evgeni W. Nazarchuk

Department of Crystallography, St. Petersburg State University, Universitetskaya Nab 7/9, 199034 St.Petersburg, Russia

ARTICLE INFO

Article history Received 18 July 2016 Received in revised form 17 August 2016 Accepted 19 August 2016 Available online 24 August 2016

Keywords: Copper Tellurium Porous compounds Open-frameworks Chemical vapor transport reactions Host-guest structures Single crystal x-ray diffraction Kagome lavers Lone-pair

1. Introduction

Porous inorganic oxide based crystalline materials are well known for a variety of different applications [1]. Mixed-valence compounds have very broad applications in the fields from biology to high-temperature superconducting materials [2]. Transition metal oxyhalide compounds containing lone-pair cations M-L-O-X, and transition metal oxides with mixed lone-pair cations M-L-L-O (*M*=transition metal cation, *L*=lone pair cations, *X*=Cl⁻, Br⁻) usually crystallize in low-dimensional structural architectures due to the 'chemical scissors' [3] role of stereochemically active lone electron pairs. Such compounds are manifested with the abundance of interesting physical properties such as magnetic frustration [4], catalytic properties, superconductivity etc [5]. d^{10} d^9 electronic configurations transformation of Cu⁺ to Cu²⁺ is usually characterized by the appearance of uncommon magnetic properties [6]. sp^3d^2 to sp^3d hybridization of Te⁴⁺ to Te⁶⁺ is traced with coordination polyhedron transformation from see-saw to regular octahedral coordination, which provokes a strong augmentation of non-linear optical properties [7]. Nine mixed-valence Cu^+/Cu^{2+} oxychlorides [8–14] and one mixed-valence Te^{4+}/Te^{6+} copper oxide [15] are known to date. Ba₂Cu₄(Te₄O₁₁)Cl₄ [11] and Cu₃Yb₃(TeO₃)₄Cl₆ [14] are the only known mixed-valence Cu⁺/ Cu²⁺ tellurites. Published to date one 'pure' (i.e. without

http://dx.doi.org/10.1016/j.jssc.2016.08.028 0022-4596/© 2016 Elsevier Inc. All rights reserved.

ABSTRACT

 $|Cu^+Cl_3|[Cu_2^{2+}(TeO_3)](1), |Cu_{1,7}^+Cl_{3,8}|[Cu_4^{2+}O(TeO_3)_2](2)$ and $Tl_2^+[Cu_2^{2+}Te^{6+}Te_6^{6+}O_{18}](3)$ were obtained by CVT and hydrothermal methods in CuCl-CuCl₂-TeO₂ and Tl₂CO₃-CuO-TeO₂ systems. 1 demonstrates layered topology with pores (1×0.65 nm), whereas **2** has open-framework structural architecture with two-dimensional system of channels (1.16×0.74 nm). Channels in open-framework of **3** are occupied by TI^+ cations. 'Host-guest' structural organization of 1 and 2 with host Cu^{2+} -tellurite units of different dimensionality formed by oxocentered OCu₄ tetrahedra and OCu₂Te triangles and guest Cu⁺-chloride species is the result of formation from gases in CVT reactions. Oxocentered units determine basic topologies of the structures of **1** and **2** and influence their stability and properties. $[Te^{6+}Te^{4+}O_{18}]^{6-}$ polytellurite-tellurate framework in 3 can be represented as consisting of Kagome-like layers.

© 2016 Elsevier Inc. All rights reserved.

additional metals) mixed-valence (Cu^+/Cu^{2+}) oxoselenite [16] suggests that similar Te/Se analogs may exist. Tellurites in the Tl-Cu-Te-O system are unknown but three tellurates were reported: Tl₄CuTeO₆ and Tl₆CuTe₂O₁₀ [17], NaTl₃Cu₄(TeO₆)₂ [18]. All of them are represented by low-dimensional structural architectures, which is unusual for structures with octahedrally coordinated Te⁶⁺. Recently we have successfully employed CVT (chemical vapor transport) reactions for obtaining of a number of copper selenite compounds [19]. Thus it was decided to apply similar method of synthesis for tellurite containing systems with copper.

Herein we report on the studies of the CuCl-CuCl₂-TeO₂ and Tl_2CO_3 -CuO-TeO₂ systems, where novel mixed-valence Cu⁺/Cu²⁺ and Te⁴⁺/Te⁶⁺ porous tellurite based compounds were obtained by CVT (**1**, **2**) and hydrothermal methods (**3**). $|Cu^+Cl_3|[Cu_2^{2+}(TeO_3)]|$ (1) demonstrates layered topology with pores $(1 \times 0.65 \text{ nm})$, whereas $|Cu_{1,7}^+Cl_{3,8}|[Cu_4^2+O(TeO_3)_2]$ (2) has open-framework structural architecture with two-dimensional system of channels. Channels in open-framework of $Tl_2^+[Cu_2^{2+}Te^{6+}Te_6^{4+}O_{18}]$ (3) are occupied by Tl⁺ cations.

2. Experimental section

2.1. Syntheses

All the reagents were analytically pure obtained from Sigma-Aldrich and used without further purification. The synthesis of 1

^{*} Corresponding author. E-mail address: o.siidra@spbu.ru (O.I. Siidra).

Fig. 1. General projection of the crystal structure of **1** along the *a* axis (Cu(3) sites belong to Cu⁺ cations) (a). *Guest* Cu₂⁺Cl₆ dimers are located between porous *host* cationic $[Cu_2^{2+}(TeO_3)]^{2+}$ layers. Ball-and-stick (b) and schematical (d) representation showing arrangement of pores in $[Cu_2^{2+}(TeO_3)]^{2+}$ layer along the *c* axis. Detailed structure of $[Cu_2^{2+}(TeO_3)]^{2+}$ layer, where each of O atoms is central in $OCu_2^{2+}Te$ triangles (c). Brown crystals of **1** under optical microscope (e). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

and **2** were made by CVT reactions in sealed evacuated silica tubes. TeO₂:CuCl:CuCl₂ were mixed in a mortar in the molar ratios 3:0.5:0.5, 2:0.5:0.5, 1:0.5:0.5, 1:1:1, 1:1.5:1.5, put into silica tubes $(\sim 13 \text{ cm long})$ and further evacuated to 10^{-2} mbar, sealed and placed horizontally into a furnace, heated at 450 °C for 50 h and slowly cooled to room temperature with a cooling rate of 3 °C/h. The temperature gradient between the source (hot) and deposition (cold) zones of the tube in the furnace was 50 °C. Brown crystals of **1** (Fig. 1e) were observed in cold zone of the tube with molar ratio TeO₂:CuCl:CuCl₂ of 1:1.5:1.5. Yellow-brown prismatic crystals of 2 (Fig. 2f) were grown also in cold zone of the tube with molar ratio TeO₂:CuCl:CuCl₂ of 2:0.5:0.5. Both novel phases were in association with already known Cu₃TeO₆ and CuTe₂O₅, except for the tube with TeO₂:CuCl:CuCl₂ of 3:0.5:0.5 where light-green crystals of Cu₂Te₂O₅Cl₂ formed in cold zone. The same CVT method with identical conditions was used to explore the quaternary system of TlCl:TeO₂:CuCl:CuCl₂ with molar ratios of 3:1:0.5:0.5, 2:1:0.5:0.5, 1:1:0.5:0.5, 1:1:1:1, 1:1:1.5:1.5 and no novel phases were obtained. Dark-brown tints of crystals of 1 and 2 suggested presence of Cu⁺ in composition. Aquamarine blue single crystals of 3 (Fig. 3g) were synthesized using hydrothermal technique. $Tl_2(CO)_3$, CuO and TeO₂ were mixed in a mortar in a molar ratio 1.5:3:1 respectively, and combined with 8 mL of KOH (1 M). The solution was placed in a 23 mL Teflon-lined autoclave. The closed autoclave was heated at 220 °C during 48 h and then cooled to room temperature with a cooling rate of 7 °C/h. Single crystals of 1 in association with already known Tl₂Te₂O₅ were filtered and

washed with hexane. The electron-microprobe analyses (HITA-CHI-TM 3000) were performed for **1**, **2** and **3**. Qualitative electron microprobe analysis (Hitachi TM-3000) revealed no other elements, except Cu, Cl and Te with the atomic number greater than 11 (Na) in **1** and **2** and Tl, Cu and Te in **3**.

2.2. X-ray crystallography

Single crystals of 1, 2 and 3 were mounted on a thin glass fibers for the X-ray diffraction analysis using Bruker APEX II DUO X-ray diffractometer with a micro-focus X-ray tube operated with MoK α radiation at 50 kV and 40 mA. The data were integrated and corrected for absorption using a multi scan type model using the Bruker programs *APEX* and *SADABS*. More than a hemisphere of X-ray diffraction data were collected. Crystallographic information is summarized in Table 1 and selected interatomic distances in Table 2.

For powder x-ray diffraction of **1**, **2** and **3** ten crystals of each phase were preliminary checked by single-crystal x-ray and later crushed and glued with epoxy into balls. X-ray powder diffraction data were collected with a Rigaku R-AXIS Rapid II single-crystal diffractometer equipped with cylindrical image plate detector using Debye-Scherrer geometry (with d=127.4 mm). Experimental and calculated X-ray powder diffraction data (CoK α) are in good agreement and given in Fig. 1S, 2S. 3S.

Download English Version:

https://daneshyari.com/en/article/1329416

Download Persian Version:

https://daneshyari.com/article/1329416

Daneshyari.com