

Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

Crystal structure of α - and β -Na₂U₂O₇: From Rietveld refinement using powder neutron diffraction data

D.I.W. IJdo*, S. Akerboom, A. Bontenbal ¹

Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands

ARTICLE INFO

Article history:
Received 14 July 2014
Received in revised form
26 August 2014
Accepted 11 September 2014
Available online 22 September 2014

Keywords: Sodium uranate Phase transition X-ray diffraction Neutron diffraction

ABSTRACT

The crystal structures of α - and β -Na₂U₂O₇ have been determined from neutron powder diffraction. At 293 K, the compound α -Na₂U₂O₇ has a monoclinic unit cell, space group $P2_1/a$, with a=12.7617(14) Å, b=7.8384(10) Å, c=6.8962(9) Å, $\beta=111.285(9)^\circ$, and Z=4. At 773 K, β -Na₂U₂O₇ is also monoclinic, space group C2/m, with a=12.933(1) Å, b=7.887(1) Å, c=6.9086(8) Å, $\beta=110.816(10)^\circ$, and Z=4. The structures can be described by layers U₂O₇²⁻ built from corner linked deformed UO₆ octahedra with pentagonal UO₇ bipyramids in between linked with common edges to each other and to the octahedra. The Na atoms occupy the interlayer space. The Na₂U₂O₇ layers are similar as in K₂U₂O₇, but with a different stacking sequence of the layers. The layers in β -Na₂U₂O₇ are more symmetric. The relationship with the compounds A_2 U₂O₇ (A=K, Rb, and Cs) is discussed.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The phase relations in the pseudo-ternary system Na–U–O are of interest because sodium is used as a coolant in fast-breeder nuclear reactors. The existence of the ternary compounds NaUO₃ [1], Na₂U₂O₇ [2], Na₂UO₄ (α and β) [3] Na₃UO₄ [4] and Na₄UO₅ [5] are well known, and their structures have been determined except for Na₂U₂O₇ and Na₃UO₄. Cordfunke et al. [6] have studied the thermodynamic properties of Na₂U₂O₇. They also reported the reversible structural phase transitions in Na₂U₂O₇ at 638 K and 1348 K, respectively [7].

A review of the structural information on $Na_2U_2O_7$ covering the works up to 1974 is given by Keller [8]. From X-ray powder diffraction data Kovba et al. [2] determined the lattice parameters of $Na_2U_2O_7$ at room temperature. From systematic absences the space group C2/m was proposed and a suggestion of the crystal structure given. However, the U–O distances in this model are unreliable. Gasperin [9] determined, from single crystal diffraction data, the crystal structure of a probable high-temperature modification, with delocalized U and O atoms. The aim of this paper is a crystal structure determination of $Na_2U_2O_7$ from neutron powder diffraction data at room temperature and at 773 K, and the relation of the structures with other $M_2U_2O_7$ (M=K, Rb and Cs).

2. Experimental

Na₂U₂O₇ was prepared by carefully mixing stoichiometric amounts of sodium carbonate or oxalate and U₃O₈ and heating the mixture gradually in oxygen up to 1073 K in a gold crucible for a week with intermediate grindings until the reaction was complete. X-ray powder diffraction analysis was used to follow the progress of the reaction. The compound was annealed in dry air at 573 K, which is just below the α - β transition temperature. Because Cordfunke and Loopstra [6] reported that Na₂U₂O₇ has reversible structure transitions, no single crystals were grown since micro twinning may hamper the structure determination from a single crystal. Neutron powder diffraction measurements at 293 K and 773 K were taken on the powder diffractometer at the HFR at NRG in Petten for structure determination. The experimental conditions were reported earlier [3]. Absorption correction was applied according to Weber [10]. The calculations were performed using the Rietica computer program [11]. The variables consist of a scale factor, twelve background parameters, three halfwidth parameters defining the Gaussian-like peak shape, an asymmetry parameter, the zero point correction, atomic position parameters, preferred orientation and thermal parameters.

3. Results

The X-ray diffraction powder pattern of α -Na₂U₂O₇ could be indexed on a monoclinic unit cell according to Kovba et al. [2] but refinement with the proposed model with space group C2/m fails.

^{*} Corresponding author. Tel.: +31715274535.

E-mail address: d.ijdo@chem.leidenuniv.nl (D.J.W. IJdo).

¹ NRG, Westerduinweg, 1755ZG Petten, PO Box 25, The Netherlands.

From the lattice parameters of related compounds $A_2U_2O_7$ (A=Na, K, Rb, and Cs) (Table 1) some similarity to the structure of $K_2U_2O_7$ [12] is obvious; however the a-axis is doubled. A related model with a double c-axis and space group C2/m was constructed. The refinement of the X-ray data gave reasonable results, but this model does not explain some small diffraction lines at room temperature in both the X-ray pattern, and more clearly in the neutron powder pattern. However, the structure of β -Na $_2U_2O_7$ at 773 K can be refined with this model in the space group C2/m. Details of the refinement are given in Table 2, the atomic parameters are listed in Table 3; selected bond distances are listed in Table 4.

Table 1 Lattice parameters of $A_2U_2O_7$ from the literature.

	a (Å)	b (Å)	c (Å)	ß (°)	Space group	Reference
Na ₂ U ₂ O ₇ K ₂ U ₂ O ₇ Rb ₂ U ₂ O ₇ Cs ₂ U ₂ O ₇	12.796(10) 6.984(3) 7.323(2) 14.5293(6)	7.822(2) 7.960(3) 8.004(3) 4.3233(3)	6.896(4) 6.931(3) 6.950(2) 7.4899(5)	111.42(6) 109.69(5) 108.81(1) 113.852(1)	P2 ₁ P2 ₁ /c	[2] [12] ^a , [17] [13,18] [14]

^a a and c axes interchanged.

Table 2 Data collection and refinement details for α - and β -Na₂U₂O₇.

	α-Na ₂ U ₂ O ₇	β-Na ₂ U ₂ O ₇
Temperature (K)	293	773
Space group	P2 ₁ /a	C2/m
Neutron wavelength (Å)	2.5723(2)	2.5723(2)
Cell parameters		
a (Å)	12.7617(14)	12.933(1)
b (Å)	7.8384(10)	7.887(1)
c (Å)	6.8962(9)	6.9086(8)
β(°)	111.285(9)	110.816(10)
$V(\mathring{A}^3)$	642.78(10)	658.80(13)
Z	4	4
D_{calc} (Mg m ⁻³)	6.553	6.389
2θ range ($^{\circ}$)	5-155	5-129
Step size (º)	0.1	0.1
μ R	0.09	0.09
R_{WP}	4.31	5.17
	3.31	4.09
$\frac{R_{\mathrm{p}}}{\chi^2}$	3.50	6.28

The neutron diffraction pattern at room temperature is slightly different from the 773 K one and could be interpreted with a related model in the subgroup $P2_1/a$. In the refinement of this structure, a slight preferred orientation of 0.988(3) was found. The agreement between the observed and calculated profile of α - and β -Na₂U₂O₇ is shown in Fig. 1. An impression of the structure of β -Na₂U₂O₇ is given in Fig. 2; the U₂O₇ planes of both structures are depicted in Fig. 3.

4. Discussion

The α - and β -Na₂U₂O₇ have closely related crystal structures. The layer structure of β -Na₂U₂O₇ consist of corner-linked U1–O₆ octahedra in the [0 1 0] direction tilted about 23° around an axis parallel to a*. Between these rows are rows of U₂–O₇ pentagonal

Table 4 Selected atomic distances (Å) in $\alpha\text{-Na}_2U_2O_7$ at 293 K and $\beta\text{-Na}_2U_2O_7$ at 773 K.

α-Na ₂ U ₂ O ₇			β -Na ₂ U ₂ O ₇		
Na1-01 Na1-03 Na1-04	2.77(2) 2.57(1) 2.43(1)	(2 ×) (2 ×) (2 ×)	Na1-01 Na1-03	2.829(17) 2.713(8)	(2 ×) (4 ×)
Na2-03	2.40(1)	(2 ×)	Na1-04 Na2-03	2.359(10) 2.396(7)	(2 ×) (4 ×)
Na2-033 Na2-04 Na3-022	2.30(1) 2.72(1) 2.41(3)	(2 ×) (2 ×)	Na2-05 Na3-02	2.876(11) 2.919(11)	(2 ×) (2 ×)
Na3-03 Na3-033 Na3-04	2.73(3) 2.54(2) 2.65(2)		Na3-03 Na3-04	2.625(8) 2.700(14)	(2 ×)
Na3-04 Na3-04 Na3-05	2.65(2) 2.65(2) 2.69(2)		Na3-04 Na3-05	2.434(15)	(2 ×) (2 ×)
Na3-05 U1-01 U1-01	2.13(2) 2.51(1) 1.88(1)		U1-O1	2.165(4)	(2 ×)
U1-O2 U1-O22	2.20(2) 2.24(1)		U1-02	2.129(8)	(2 ×)
U1-03 U1-033 U2-01	1.81(2) 1.90(2) 2.38(1)		U1-03 U2-01	1.857(9) 2.334(11)	(2 ×)
U2-O2 U2-O2	2.04(2) 2.91(1)		U2-02 U2-02	2.256(8) 2.635(7)	(2 ×) (2 ×)
U2-022 U2-022 U2-04 U2-05	2.25(1) 2.30(1) 1.79(1) 1.95(2)		U2-O4 U2-O5	1.844(13) 1.838(16)	

Table 3 Fractional atomic coordinates and thermal parameters (\mathring{A}^2) of α -Na₂U₂O₇ (293 K) and β -Na₂U₂O₇ (773 K).

S.G.	α -Na ₂ U ₂ O ₇ $P2_1/a$				β-Na ₂ U ₂ O ₇ <i>C</i> 2/ <i>m</i>		
	x	у	z	x	у	Z	
Na1	0	0	0	0	0	0	
Na2	0.5	0	0	0.5	0	0	
Na3	-0.026(1) B=0.35(24) Å ²	0.258(2)	0.492(4)	0 $B=3.25(20) \text{ Å}^2$	0.026(2)	0.5	
U1	0.246(1)	0.262(1)	0.008(2)	0.25	0.25	0	
U2	0.2415(7) $B = 0.60(11) \text{ Å}^2$	0.017(1)	0.470(1)	0.2438(6) $B = 0.60(10) \text{ Å}^2$	0	0.4593(9)	
01	0.231(2)	-0.038(2)	0.123(2)	0.2328(4)	0	0.1146(16)	
02	0.260(2)	0.681(1)	0.302(3)	0.2625(13)	0.3012(6)	0.3102(13)	
022	0.273(1) $B = 1.76(20) \text{ Å}^2$	0.270(2)	0.347(2)	` ,	` ,	, ,	
03	0.406(2)	0.764(2)	0.090(3)	0.4026(7)	0.2230(9)	0.0961(12)	
033	0.402(2)	0.206(2)	0.099(3)	$B = 3.20(10) \text{ Å}^2$	` ,	` '	
04	0.409(1)	0.526(2)	0.625(2)	-0.0913(10)	0	0.6374(16)	
O5 B (Å ²)	0.410(2) $B = 1.63(11) \text{ Å}^2$	0.019(2)	0.577(2)	0.3958(11) $B=2.38(10) \text{ Å}^2$	0	0.5563(18)	

Download English Version:

https://daneshyari.com/en/article/1329596

Download Persian Version:

https://daneshyari.com/article/1329596

<u>Daneshyari.com</u>