
Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

Synthesis, structure and properties of layered iron-oxychalcogenides Nd₂Fe₂Se_{2-x}S_xO₃

Y. Liu^a, S.B. Zhang^{a,*}, S.G. Tan^a, B. Yuan^a, X.C. Kan^a, L. Zu^a, Y.P. Sun^{a,b,c,**}

^a Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China ^b High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, People's Republic of China

^c University of Science and Technology of China, Hefei 230026, People's Republic of China

ARTICLE INFO

Article history: Received 29 May 2014 Received in revised form 3 September 2014 Accepted 11 September 2014 Available online 30 October 2014

Keywords: Sulfur substitution Semiconductor Antiferromagnetic Thermoelectric

ABSTRACT

A new series of sulfur-substituted iron-oxychalcogenides $Nd_2Fe_2Se_2_xS_xO_3$ ($0 \le x \le 0.4$) was synthesized by solid state reaction method, and investigated by structure, transport, magnetic and specific heat measurements. The compounds crystallize in the layered tetragonal structure with *I4/mmm* space group, and show semiconducting behavior. The large discrepancy between the activation energies for conductivity, E_ρ (152–202 meV), and thermopower, E_S (15.6–39.8 meV), indicates the polaronic transport mechanism of the carrier. The parent compound $Nd_2Fe_2Se_2O_3$ exhibits a frustrated antiferromagnetic (AFM) ground state, and the S-substitution induces an enhanced ferromagnetic (FM) component and possible increased degree of frustration.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Layered transition-metal compounds have been extensively studied for decades owing to their novel physical properties, especially colossal magnetoresistance in layered manganites [1,2], giant thermoelectric power in layered cobaltates [3–5], and high- T_c superconductivity in layered cuprates and iron-based superconductors [6–9].

Kamihara et al. reported superconductivity with $T_c=26$ K in LaO_{1-x}F_xFeAs [10]. Later, in other F-doped *Ln*FeAsO (*Ln*=rare earth elements) compounds, the T_c increased rapidly, including $T_c=41$ K in CeO_{1-x}F_xFeAs [7] and $T_c=52$ K in PrO_{1-x}F_xFeAs [11], and reached $T_c=55$ K in SmO_{1-x}F_xFeAs [12]. Besides the F-doping in O sites, the superconductivity could also be observed in *Ln*FeAsO via isovalent substitution of As by P [13]. Afterwards, the *A*Fe₂As₂ (*A*=Ca, Sr, Ba, Eu) [9,14–18] and *A*FeAs (*A*=Li, Na) [19–21] type compounds were discovered. The superconductivity could be induced with $T_c=26$ K in EuFe₂(As_{0.7}P_{0.3})₂ [22] and $T_c=30$ K in BaFe₂(As_{0.7}P_{0.3})₂ [23], via partially substituting As by P. In Fe-chalcogenides, FeTe undergoes an antiferromagnetic (AFM) transition, which could be suppressed with partial substitution of Te by S or Se [24–26], and then, shows superconductivity.

Therefore, the anion-substitution is an important method to investigate the physical properties by introducing chemical pressure or adjusting carrier content.

Recently, a series of R_2 Fe₂Se₂O₃ (R=La–Sm) has gathered much attention, which shows a similar local environment of Fe ions to that in Fe-based superconductors [27–30]. Unfortunately, they show antiferromagnetic (AFM) semiconducting ground state. In this series, the R₂O₂ sheets of edge-sharing OR₄ tetrahedron alternate with Fe₂OSe₂ layers of face-sharing octahedron. Within the Fe₂OSe₂ layer, the FeO₂Se₄ octahedrons are distorted due to different Fe-Se and Fe-O bond distances. There are three basic interactions: the nearest neighbor (NN) I_3 interaction of Fe–Fe, the next nearest neighbor (NNN) J₂ interaction of Fe–Se–Fe, and the NNN J₁ interaction of Fe-O-Fe. Theoretical calculation and neutron diffraction results indicate that the AFM transition stems from the competition of these three interactions in an unusual frustrated AFM checkerboard spin-lattice. The evolution of structure and magnetic properties tuned by Fe/Mn ratio in La₂(Fe_{1-x}Mn_x)₂Se₂O₃ was investigated, and shows a rich magnetic phase diagram [31]. So far, there is no report on the effect of anion-substitution in this system. As we discussed above, the anion-substitution plays an important role to adjust the ground state of the iron-based superconductors. Therefore, we try to study the anion-substitution effect in this system.

In this study, we successfully synthesized a new series of anionsubstituted compounds $Nd_2Fe_2Se_{2-x}S_xO_3$ ($0 \le x \le 0.4$). Systematical measurements, including X-ray diffraction (XRD), electrical resistivity, thermoelectric power, magnetic susceptibility, and specific heat, were subsequently performed to shed light on the

^{*} Corresponding author.

^{**} Corresponding author at: Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.

E-mail addresses: sbzhang@issp.ac.cn (S.B. Zhang), ypsun@issp.ac.cn (Y.P. Sun).

physical properties, and the anion sulfur substituted effect was discussed.

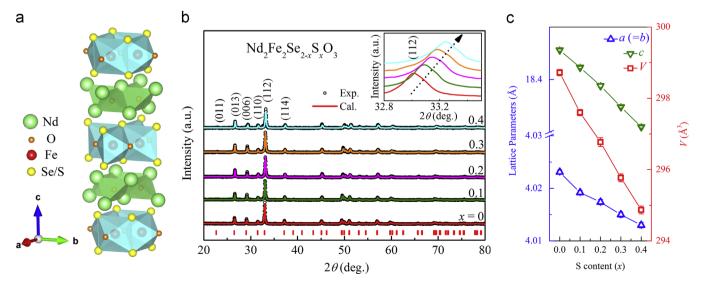
2. Experimental

Nd₂Fe₂Se_{2−x}S_xO₃ (0 ≤ x ≤ 0.4) polycrystals were synthesized by solid state reaction method using Nd₂O₃ (99.99%), Fe (99.9%), Se (99.95%), and S (99.9%) powder as raw materials. Nd₂O₃ was dried by heating in air at 1173 K for 20 h before using. The powder was weighed according to the stoichiometric ratio, thoroughly grounded, pressed into a pellet and then sealed in an evacuated quartz tube (< 10⁻³ Pa). The tube was heated to 1273 K and reacted for 24 h followed by furnace cooling. The process was repeated twice to ensure homogeneity. The powder XRD was performed using a Philips X'Pert PRO X-ray diffractometer with Cu Kα radiation (λ = 1.54 Å). The structural parameters were obtained by using the Rietveld method with the X'Pert Plus software. Transport, specific heat and magnetic measurements were carried out in Quantum Design PPMS-9 and MPMS-5 system, respectively.

3. Results and discussion

3.1. Structure

Fig. 1(a) shows the crystal structure of $Nd_2Fe_2Se_{2-x}S_xO_3$ ($0 \le x \le 0.4$), which is built up by stacking fluorite-like Nd_2O_2 layers and $Fe_2O(Se/S)_2$ layers alternatively along the *c* axis. The Fe_2O sheets adopt an unusual anti-CuO₂ arrangement with Fe^{2+} cations coordinated by two in-plane O^{2-} and four Se^{2-} above and below the plane, leading to face-shared FeO_2Se_4 octahedron. Fig. 1 (b) shows the powder XRD patterns for $Nd_2Fe_2Se_{2-x}S_xO_3$ ($0 \le x \le 0.4$), scanning over a 2θ range of 20° - 80° at room temperature. The refinement curves are obtained by the Rietveld method with the X'Pert Plus software. All the reflections could be indexed with


I4/mmm space group and the structure details are summarized in Table 1. With increasing *x*, the diffraction peaks gradually shift to higher angle degree, which is illustrated by the enlargement of peak (1 1 2) shown in the inset of Fig. 1(b), indicating a contraction of the lattice. It is mainly due to the smaller radius of S than that of Se atom. Fig. 1(c) shows the evolution of the lattice parameters (a=b, c) and unit cell volume (V), which shows approximately linear x-

dependence, indicating the well substitution in Se(S) sites. The lattice parameters of x=0 (a=4.0231(4) Å and c=18.456(2) Å) gradually decrease to those of x=0.4 (a=4.0130(5) Å and c=18.310(2) Å). The unit cell volume (V) variation ($\delta=(V_{x=0}-V_{x=0.4})/V_{x=0}$) is about 1.29%.

Fig. 2(a) depicts the Fe₂O(Se/S)₂ layer from a vertical view with Se/S atoms puckering above and below the square Fe₂O sheet. The evolution of the nearest intralayer Fe–Fe distance ($d_{\text{Fe-Fe}}$), together with the Fe–O and Fe–Se/S bond distances ($d_{\text{Fe–O}}$ and $d_{\text{Fe-Se/S}}$), is shown in Fig. 2(b). All the distances decrease with increasing x. For Nd₂Fe₂Se₂O₃ (x=0), the approximated bondvalence-sum (BVS) of Fe ion has been calculated as +2.02 using the equation of BVS= $\sum \exp[(R-d)/0.37]$, where R is the bond valence parameter and *d* is the bond length [32,33]. The calculated result is rather close the expected value and confirms the existence of Fe²⁺ ionic state. In addition, we calculated the ratio of $d_{\text{Fe-Fe}}:d_{\text{Fe-Se/S}}$ and it increases from 1.047 for x=0 to 1.050 for x=0.4. Fig. 2(c) shows the local environment of each Fe²⁺ ion, which is a distorted octahedron due to different bond distances of $d_{\text{Fe-O}}$ and $d_{\text{Fe-Se/S}}$. The bond angles of $\alpha_{\text{Se/S-Fe-Se/S}}$ are shown in Fig. 2(d). The ratio of $\alpha_{1(Se/S-Fe-Se/S)}$: $\alpha_{2(Se/S-Fe-Se/S)}$ gradually increases from 1.13 for x=0 to 1.14 for x=0.4, suggesting the Sdoping in Se sites slightly enhances the degree of octahedral distortion.

3.2. Transport properties

Fig. 3 shows the temperature-dependent electrical resistivity (ρ) for Nd₂Fe₂Se_{2-x}S_xO₃ (x=0, 0.2, 0.4), which displays an obvious semiconducting behavior. The series of $A_2F_2Fe_2OQ_2$ (A=Sr, Ba; Q=S, Se) is Mott insulator with narrowing 3d electronic band due to strong correlation effect [34]. Considering the similar local environment of Fe^{2+} ions, Nd₂Fe₂Se_{2-x}S_xO₃ could also be regarded as correlation-induced semiconductor. Generally, there are mainly three models to well describe the semiconducting behavior. (1) the thermally activated model: $\rho(T) = \rho_0 \exp(E/k_B T)$, where ρ_0 is the prefactor, E is the activation energy and $k_{\rm B}$ is Boltzmann constant. (2) the adiabatic small polaron hopping model: $\rho(T) = AT \exp(E_{\rho}/k_B T)$. (3) Mott's variable-range hopping (VRH) model: $\rho(T) = \rho_0 \exp(T_0/T)^{1/3}$ for 2D system. Fig. 3 shows the fitting result of the adiabatic small polaron hopping model. The extracted activation energy E_{ρ} is shown in the inset of Fig. 3, which is about 152(5) meV for x=0, and gradually increase to 202

Fig. 1. (a) The crystal structure of Nd₂Fe₂Se_{2-x}S_xO₃ ($0 \le x \le 0.4$). (b) The powder XRD patterns together with the refinement curves. (c) The evolution of lattice parameters (a=b, c) and unit cell volume (V) with x.

Download English Version:

https://daneshyari.com/en/article/1329633

Download Persian Version:

https://daneshyari.com/article/1329633

Daneshyari.com