

Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

Zinc(II) and Cadmium(II) coordination polymers constructed from phenylenediacetate ligands

Güneş Günay Sezer^{a,b,*}, Okan Zafer Yeşilel^b, Hakan Erer^b, Onur Şahin^c

^a Vocational School of Health Services, Bartın University, Bartın, Turkey

^b Department of Chemistry, Eskişehir Osmangazi University, Eskişehir, Turkey

^c Scientific and Technological Research Application Center, Sinop University, Sinop, Turkey

ARTICLE INFO

Article history: Received 31 July 2015 Received in revised form 12 November 2015 Accepted 14 November 2015 Available online 23 November 2015

Keywords: Coordination polymer Phenylenediacetate complex Zinc(II) complex Cadmium(II) complex N-donor ligand

ABSTRACT

A series of new coordination polymers {[$Zn(\mu-opda)(\mu-bpa)$] · $2H_2O_{n}$ (1), [$Zn(\mu_3-ppda)(\mu-bpa)$]_n (2), [$Cd(\mu_3-ppda)(\mu-bpa)$]_n (3), [$Cd(\mu_3-mpda)(\mu-bpa)$]_n (4) and [$Cd(\mu_3-mpda)(\mu-bpy)$]_n (5), (o/m/ppda=1,2/1,3/1,4-phenylenediacetate, bpa=1,2-bi(4-pyridyl)ethane, bipy=4,4'-bipyridine) were synthesized. Their structures were characterized by elemental analysis, IR spectroscopy, single-crystal and powder X-ray diffraction. Furthermore, the effect of metal sources (zinc acetate and zinc oxide) and acidity of the solution on the structure of the coordination polymers was discussed for complexes 1 and 5, respectively. The single-crystal X-ray crystallographic studies revealed that complexes 1, 3, 4 and 5 are uninodal (4)-connected 2D frameworks and display sql topology with the point symbol of ($4^{4}.6^{2}$). Complex 2 is 3D coordination polymer and exhibits pcu topology with the point symbol of ($4^{12}.6^{3}$). In addition, the luminescent properties and thermal behavior of all complexes were also investigated.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In the last two decades, the design and construction of coordination polymers (CPs) have attracted considerable attention, not only due to their fascinating structures and topologies, but also due to their limitless potential applications in many fields such as storage, separation, purification, catalysis, sensing, etc [1–7]. It is well known that organic ligands are the most important building blocks to construct desirable CPs [8]. In addition, the coordination geometry of the central atom, the pH value of the reaction solution, the reaction temperature and time play an important role in the rational construction of CPs [8]. Rigid aromatic di-, tri-, and tetra-carboxylic acids which have more important advantages than other organic ligands are extensively used [9–11]. In contrast, the flexible carboxylic acids that have both rigid aromatic and flexible aliphatic character, such as phenylenediacetic acid, which possesses ortho-, meta-, and para position isomers have been rarely used for the construction of CPs [12,13]. In fact, they are good candidates for the enrichment of the structural and functional diversities of CPs. Rigid phenyl ring can provide the necessary structural scaffolding [14]. Aliphatic groups, which provide flexibility and conformational freedom, can easily adjust their conformations to meet the coordination requirement of the metal ions. When the carboxylic acid groups completely deprotonated, which results in variable carboxylate binding modes and higher dimensional frameworks [15]. Moreover, they can act not only as a hydrogen-bond acceptor but also as a hydrogen-bond donor, depending upon the number of deprotonated carboxyl groups [16]. Some coordination polymers containing phenylenediacetic acid, d¹⁰ metal centers and N-containing bidentate ligands, such as 4,4'-bipyridine, 1,2-bis(4-pyridyl)ethane or 1,2-bis(4-pyridyl)ethylene have been studied to build higher dimensional frameworks and novel topology [17–19]. According to the reported studies, the selection of a suitable ligand and the combination of dicarboxylate and dipyridyl ligands with d¹⁰ metal centers which have large radii, high coordination numbers, and photoluminescent properties are crucial to construct various coordination frameworks with different structures and functions [3,10–12,14–35].

Due to the reasons mentioned above, systematic studies were carried out with the reaction of Cd(II) or Zn(II) sources, the H₂pda isomers, and a series of N-containing auxiliary ligand to investigate the influence of flexible carboxylic acids which possess aromatic and aliphatic groups and N-containing auxiliary ligands on the properties and construction of coordination polymers. In this work, five new coordination polymers, $\{[Zn(\mu-opda)(\mu-bpa)] \cdot 2H_2O\}_n$ (1), $[Zn(\mu_3-ppda)(\mu-bpa)]_n$ (2), $[Cd(\mu_3-ppda)(\mu-bpa)]_n$ (3), $[Cd(\mu_3-mpda)(\mu-bpa)]_n$ (4) and $[Cd(\mu_3-mpda)(\mu-bipy)]_n$ (5) were successfully synthesized and characterized.

^{*}Corresponding author at: Vocational School of Health Services, Bartın University, Bartın, Turkey.

Table 1

Crystal data and structure refinement parameters for complexes 1-5.

Crystal data	1	2	3	4	5
Empirical formula	C ₂₂ H ₂₄ N ₂ O ₆ Zn	C ₂₂ H ₂₀ N ₂ O ₄ Zn	C222H20CdN2O4	C222H20CdN2O4	$C_{20}H_{16}CdN_2O_2$
Formula weight	477.80	441.77	488.80	488.80	460.75
Crystal system	Triclinic	Monoclinic	Triclinic	Triclinic	Triclinic
Space group	P-1	$P2_1/n$	P-1	P-1	P-1
a (Å)	7.7740 (1)	10.0931 (6)	9.919 (5)	10.0728 (5)	9.1652 (1)
b (Å)	8.8560 (2)	14.2804 (8)	10.556 (5)	10.2300 (5)	9.6897 (1)
c (Å)	16.4130 (2)	13.4732 (8)	10.562 (5)	11.6668 (5)	11.3093 (1)
α (deg.)	86.079 (1)	90.00	82.088 (5)	102.891 (3)	93.087 (1)
β (deg.)	87.8520 (11)	103.016 (1)	64.752 (6)	100.905 (2)	111.0030 (11)
γ (deg.)	81.940 (1)	90.00	71.410 (5)	118.203 (2)	110.136 (1)
$V(Å^3)$	1115.75 (3)	1892.05 (19)	948.1 (8)	970.14 (8)	862.13 (2)
Z	2	4	2	2	2
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$	1.422	1.551	1.712	1.673	1.775
$\mu (\mathrm{mm}^{-1})$	1.14	1.33	1.18	1.16	1.30
θ range (deg.)	3.5-26.0	2.3-27.5	2.4-27.4	2.3-23.0	2.5-32.9
Measured refls.	7172	13394	8827	4921	17972
Independent refls.	4332	4334	4319	3353	6213
R _{int}	0.046	0.077	0.044	0.205	0.014
S	0.97	1.00	1.01	1.06	1.14
R1/wR2	0.035/0.079	0.035/0.092	0.036/0.079	0.075/0.149	0.035/0.083
$\Delta \rho_{\rm max} / \Delta \rho_{\rm min}$ (eÅ ⁻³)	0.37 / - 0.29	0.68/-0.72	0.76/-1.13	1.70/-2.45	0.66 / -0.54

Fig. 1. (a) The molecular structure of 1 showing the atom numbering scheme (b) 2D layer of 1.

Download English Version:

https://daneshyari.com/en/article/1329721

Download Persian Version:

https://daneshyari.com/article/1329721

Daneshyari.com