

Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

Structural study and physical properties of a new phosphate KCuFe(PO₄)₂

Abdessalem Badri^a, Mourad Hidouri^{a,*}, María Luisa López^b, Carlos Pico^b, Alain Wattiaux^c, Mongi Ben Amara^a

^a UR Matériaux Inorganiques, Faculté des Sciences, 5019 Monastir, Tunisie

^b Departamento de Química Inorgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain

^c Institut de Chimie de la Matière Condensée de Bordeaux, CNRS, Université de Bordeaux I, 87 Avenue du Dr. A. Schweitzer, 33608 Pessac-Cedex, France

ARTICLE INFO

Article history: Received 11 January 2011 Received in revised form 16 February 2011 Accepted 16 February 2011 Available online 4 March 2011

Keywords: Phosphate X-ray diffraction Mössbauer spectroscopy Magnetic susceptibility Electrical measurements

ABSTRACT

Single crystals of a new phosphate KCuFe(PO₄)₂ have been prepared by the flux method and its structural and physical properties have been investigated. This compound crystallizes in the monoclinic system with the space group $P_{1/n}$ and its parameters are: a = 7.958(3) Å, b = 9.931(2) Å, c = 9.039(2) Å, $\beta = 115.59(3)^{\circ}$ and Z = 4. Its structure consists of FeO₆ octahedra sharing corners with Cu₂O₈ units of edge-sharing CuO₅ polyhedra to form undulating chains extending infinitely along the *b*-axis. These chains are connected by the phosphate tetrahedra giving rise to a 3D framework with six-sided tunnels parallel to the [101] direction, where the K⁺ ions are located. The Mössbauer spectroscopy results confirm the exclusive presence of octahedral Fe³⁺ ions. The magnetic measurements show the compound to be antiferromagnetic with $C_m = 5.71$ emu K/mol and $\theta = -156.5$ K. The derived experimental effective moment $\mu_{ex} = 6.76 \mu_{\rm B}$ is somewhat higher than the theoretical one of $\mu_{th} = 6.16 \mu_{\rm B}$, calculated taking only into account the spin contribution for Fe³⁺ and Cu²⁺ cations. Electrical measurements allow us to obtain the activation energy (1.22 eV) and the conductivity measurements suggest that the charge carriers through the structure are the potassium cations.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In the last two decades, an extensive search has been carried out for new ferroelectric, piezoelectric, laser luminescent and other materials, which can be applied in quantum electronics and fiber optics and used as sorbents and catalysts. In this context, complex phosphates containing mono- and trivalent cations are of particular interest [1–3]. The structural properties of these compounds were discussed in detail and it was revealed that the sizes of the M^{I} and M^{III} cations and their ratio have a dominant role in their structure formation [4].

The targeted synthesis of new phosphates containing variable combinations of cations and predictions of their physico-chemical characteristics require revealing the composition–structure–property relations for different types of compounds. In this sense, the aim of this work is to study the relations between structure and properties of two phosphates, KMgFe(PO₄)₂ [5] and KCuFe(PO₄)₂. The stoichiometry of these compounds could be related with the Ca₃(PO₄)₂ one, where the Ca²⁺ can be substituted by various cations [6] and with the Ca₃(VO₄)₂ one which is a high temperature ferroelectric (FE) with a phase transition

* Corresponding author. E-mail address: mourad_hidouri@yahoo.fr (M. Hidouri). temperature of T_c =1383 K [7]. Other compounds of this type, e.g. Ca₉R(PO₄)₇ also possess ferroelectric (FE) phase transitions [8]. Sr-analogs of such phosphates, Sr₉R(PO₄)₇ have been shown to have a centrosymmetric monoclinically distorted β -Ca₃(PO₄)₂type structure [9]. This compound exhibits an antiferroelectric (AFE) phase transition at 773 K [10].

In this paper, we report the synthesis, structural characterization and physical properties of a new phosphate $KCuFe(PO_4)_2$, and the electrical behavior is compared with $KMgFe(PO_4)_2$ which shows a bi-dimensional structure as we have recently reported [5].

2. Experimental section

2.1. Synthesis

Single crystals of KCuFe(PO₄)₂ were prepared by crystallization in a flux of potassium dimolybdate K₂Mo₂O₇, in an atomic ratio P:Mo=4:1. Appropriate amounts of KNO₃ (Fluka, 99%), Cu(NO₃)₂·6H₂O (Acros, 99%), Fe(NO₃)₃·9H₂O (Fisher, 98.6%), (NH₄)₂HPO₄ (Merck, 99%) and MoO₃ (Acros, 99%) were mixed by dissolving in aqueous nitric acid and the obtained solution was dried at 353 K. The resulting dry residue was ground in an agate mortar to ensure its best homogeneity, and then gradually heated

^{0022-4596/\$ -} see front matter \circledcirc 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2011.02.021

Table 2

Fig. 1. The powder X-ray diagram of KCuFe(PO₄)₂.

Details of the data collection and structural refinement for KCuFe(PO₄)₂.

Crystal data	
Chemical formula	KCuFe(PO ₄) ₂
Crystal system	Monoclinic
Space group	$P2_1/n$
a (Å)	7.958(3)
b (Å)	9.931(2)
<i>c</i> (Å)	9.039(2)
β (deg.)	115.59(3)
Z	4
$ ho_{cal} (\mathrm{g}\mathrm{cm}^{-3})$	3.59
Data collection	
Crystal dimensions	$0.4 \times 0.1 \times 0.1 \text{ mm}$
Diffractometer	CAD4 (Enraf-Nonius)
Radiation	λ (Mo Kα)=0.7107 Å
Monochromator	Graphite
$\mu (\mathrm{mm}^{-1})$	6.7
Scan type	$\omega/2\theta$
Scan speed	Variable
$2\theta_{\max}$ (deg.)	59.9
Number of unique reflections; R _{int}	1872; <i>R</i> _{int} =0.031
Number of observed reflections $[I > 2\sigma(I)]$	1771
F (000)	672
Structural refinement	
Intensity corrections	Lorentz-polarization
Absorption correction (T_{\min}, \max)	Analytical (0.20, 0.49)
Structure solution	Direct methods
Reliability factors	$R_1 = 0.028$; w $R_2 = 0.089$; S = 0.98
Number of parameters	119
$(\Delta \rho)_{\text{max, min}} (e \text{ Å}^{-3})$	0.97; -0.84

up to 873 K in a platinum crucible. After being reground, the mixture was melted for 1 h at 1173 K and subsequently cooled at a rate of 10 K h⁻¹ down to 673 K, after which the furnace was turned off. The crystals obtained by washing the final product with warm water, in order to dissolve the flux, are essentially composed by dark green and hexagonally shaped rod crystals of KCuFe(PO₄)₂.

After the structure determination, a polycrystalline sample was synthesized by a conventional solid state reaction starting from a stoichiometric mixture of KNO₃, $Cu(NO_3)_2 \cdot 6H_2O$, $Fe(NO_3)_3 \cdot 9H_2O$ and $(NH_4)_2HPO_4$. After an initial treatment, similar to that undertaken for the synthesis of the single crystals until 873 K, the sample was subjected to final calcinations at 1113 K for

Atom	Wyckoff	$x(\sigma)$	$y(\sigma)$	$z(\sigma)$	$U_{eq}\left(\sigma ight)$
К	8d	0.4179(2)	-0.1333(1)	0.0748(1)	0.0239(2)
Cu	8 <i>d</i>	0.3695(1)	0.1201(2)	-0.5532(1)	0.0077(2)
Fe	8d	0.0143(1)	0.1253(1)	-0.2573(1)	0.0051(2)
P1	8d	0.1281(1)	0.1594(1)	-0.8587(1)	0.0050(2)
011	8 <i>d</i>	0.4496(2)	0.2635(2)	-0.3942(2)	0.0097(3)
012	8 <i>d</i>	0.3000(2)	0.2464(2)	-0.7429(2)	0.0075(3)
013	8 <i>d</i>	0.1483(2)	0.0375(2)	-0.7424(2)	0.0083(3)
014	8 <i>d</i>	0.1426(3)	0.1141(2)	-0.0127(2)	0.0096(3)
P2	8 <i>d</i>	0.2677(2)	-0.0886(1)	-0.3511(1)	0.0047(2)
021	8 <i>d</i>	0.0970(3)	-0.1312(2)	-0.5042(2)	0.0100(3)
022	8 <i>d</i>	0.3580(3)	-0.2084(2)	-0.2403(2)	0.0090(3)
023	8 <i>d</i>	0.2221(2)	0.0137(2)	-0.2469(2)	0.0092(3)
024	8 <i>d</i>	0.4148(3)	-0.0236(2)	-0.3993(2)	0.0090(3)

Fig. 2. A projection along the [101] direction of the structure showing the sixedged tunnels, occupied by the K⁺ ions. *Legend*: CuO₅ polyhedra=yellow; PO₄ tetrahedra=hatched; FeO₆ polyhedra=purple; and K⁺ cations=green circles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. The Cu/Fe/O sub-network forming sheet parallel to the *bc* plane. *Legend*: CuO₅ polyhedra=yellow and FeO₆ polyhedra=purple. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Download English Version:

https://daneshyari.com/en/article/1330929

Download Persian Version:

https://daneshyari.com/article/1330929

Daneshyari.com