Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

The new silver borate Ag₃B₅O₉

© 2014 Elsevier Inc. All rights reserved.

Gerhard Sohr, Viktoria Falkowski, Hubert Huppertz*

Institut für Allgemeine, Anorganische und Theoretische Chemie, Leopold-Franzens-Universität Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria

ARTICLE INFO

ABSTRACT

Article history: Received 21 October 2014 Received in revised form 28 November 2014 Accepted 3 December 2014 Available online 11 December 2014 Keywords: Borates Silver High-pressure chemistry Argentophillic interaction Structure elucidation

1. Introduction

During our research in the field of high-pressure alkali metal borates, we noticed that HP-RbB₃O₅ is isotypic to HP-KB₃O₅, [1] according to the similar ionic radii of the alkali metal cations differing by 7 pm (K: 173 pm, Rb: 180 pm) [2]. Consequently, pseudo alkali metal borates with comparable ionic radii can form isotypic structures or substitution variants, as can be seen in the compounds HP-(NH₄)B₃O₅ or HP-TlB₃O₅ [3]. Even the significantly larger cesium ion (195 pm) [2] fits into this structure type, if it is occupying not more than one half of the M^+ positions, as was demonstrated in the compound HP-Cs_{1-x}(H₃O)_xB₃O₅ (*x*=0.5–0.7) [4]. Another structure type present in lighter high-pressure alkali metal borates is found in the sodium tetraborate HP-Na₂B₄O₇ [5]. With the knowledge that the radius of the pseudo alkali metal ion silver (142 pm) differs by just 10 pm from the value of the sodium ion (132 pm), [2] we started investigations in the system Ag–B–O.

Under ambient-pressure conditions, seven ternary borate phases are known in this system: the metaborate $AgBO_2$, [6] the orthoborates Ag_3BO_3 -I [7] and Ag_3BO_3 -II, [8] two forms of $Ag_2B_8O_{13}$, [9] as well as $Ag_2B_4O_7$ and AgB_9O_{14} [10].

Within these ambient-pressure phases, there are examples for silver borates being isotypic to sodium borates like β -Ag₂B₈O₁₃ to β -Na₂B₈O₁₃ [9b]. However, there are also examples for phases possessing a different structure. For example, AgBO₂ crystallizes in a different structure than NaBO₂ or KBO₂. In literature, this difference is used to underline a structure influencing factor of

* Corresponding author. *E-mail address:* hubert.huppertz@uibk.ac.at (H. Huppertz). Ag⁺ ions that, for example, is also observed in the system Ag–Si–O [6]. This fascinating structure influencing factor is caused by the fully occupied 4*d* orbitals of the Ag⁺ ions (electronic configuration: [Kr]4*d*¹⁰). Homoatomic $d^{10}-d^{10}$ interactions lead to shortened distances between the Ag⁺ cations in the range between 253.35(5) pm (Ag–Ag single bond) and 344 pm (double van der Waals radius). These argentophillic interactions lead to substructures of the silver cations of different complexity, ranging from

Single crystals of $Ag_3B_5O_9$ were obtained via high-pressure synthesis at 3 GPa and 600 °C, using a

Walker-type multianvil high-pressure device. Ag₃B₅O₉ crystalizes with a=674.7(2), b=943.5(2),

c=1103.5(2) pm, V=0.7025(2) nm³, and Z=4 in the noncentrosymmetric space group $P2_12_12_1$ (no.

19). The orthorhombic structure was refined from 3740 independent reflections with R1 = 0.0496 and

wR2 = 0.587 (all data). It is built up from infinite corner-sharing chains of BO₄ tetrahedra along the *a* axis,

which are interconnected by BO₃ groups to form a network. In the structure, three crystallographically

independent sites are occupied with Ag⁺ cations exhibiting argentophillic interactions. The synthetic

conditions as well as the results of the single crystal structure analysis are presented.

simple dimers up to complex networks [11]. The question arises, how the system Ag–B–O behaves under highpressure conditions. Is there a silver borate isotypic to HP-Na₂B₄O₇ or does the structural chemistry differ due to argentophillic interactions? Interestingly, no high-pressure silver borates were known until we started our investigations in this system. With the compound AgB₃O₅, we recently synthesized the first high-pressure silver borate with an interesting, noncentrosymmetric structure [12]. Noncentrosymmetric borates are highly interesting materials due to their industrial application as non-linear optical materials, e.g. β -BaB₂O₄ (BBO) [13]. In this work, the second high-pressure silver borate possessing the composition Ag₃B₅O₉ will be presented. Synthetic conditions as well as the crystal structure of the new compound will be described.

2. Results and discussion

2.1. Crystal structure

The silver borate $Ag_3B_5O_9$ crystalizes with four formula units (*Z*=4) in the orthorhombic space group $P2_12_12_1$ (no. 19). The

dimensions of the unit cell are a=674.7(2), b=943.5(2), c=1103.5(2) pm, and V=0.7025(2) nm³ (see Table 1). Fig. 1 displays the unit cell down the *a* axis. The fundamental building block is presented in Fig. 2 together with the atom labeling (for atomic coordinates and displacement parameters see Tables 2 and 3). BO₄ tetrahedra and BO₃ groups are linked by common oxygen atoms to form a noncentrosymmetric B–O network structure.

Three crystallographically independent BO₄ tetrahedra are present in the structure. They exhibit B-O bond lengths between 145.0(6) and 149.9(6) pm (av. 147.2 pm), 144.7(6) and 149.7(6) pm (av. 147.5 pm), and 145.5(6) and 149.1(6) pm (av. 147.5 pm) for the tetrahedra around B1, B3, and B4, respectively (see Table 4). The O-B-O bond angles in these tetrahedra are distributed from 106.0 (3)° to 112.2(4)°, 105.1(3)° to 112.1(4)°, and 105.9(4)° to 112.4(4)° (see Table 5). The mean O-B-O bond angle in the tetrahedra around B1 and B3 is 109.5°, while the tetrahedron around B4 exhibits a value of 109.4°. The B-O bond lengths within the two independent BO₃ groups range from 137.0(7) to 140.3(6) pm (av. 138.3 pm) and from 136.1(6)° to 138.0(6) pm (av. 137.2 pm) with O-B-O bond angles from $115.1(4)^{\circ}$ to $121.6(4)^{\circ}$ (av. 119.2°) and 117.8(4)° to 121.4(4)° (av. 120.0°) for B2O₃ and B5O₃, respectively. These values are within the range of the values found in literature for BO₄ tetrahedra (137.3-169.9 pm, av. 147.6(3.5) pm and 95.7-119.4°, av. 109.4(2.8)°) [14] and for BO₃ groups (135.1–140.3 pm, av. 137.0 pm and 109–129°, av. 120.0°) [15].

The BO₄ tetrahedra are linked by common oxygen atoms to form chains along the *a* axis (see Fig. 1, bottom). In each chain, corners of two neighboring BO₄ tetrahedra (B3O₄ to B4O₄ and B4O₄ to B1O₄) are additionally connected by BO₃ groups (B5O₃ and B2O₃, respectively), yielding two crystallographically different "dreier" rings [16]. The remaining corner of the BO₃ groups connect to the remaining corner of BO₄ tetrahedra in the neighbored chains (see Fig. 3), resulting in a network of BO₃ and BO₄ groups. Within this network, channels are

formed along [101] and [100] which incorporate the Ag1 and Ag2 sites, respectively. The Ag3 site is stacked with the B5O₃ groups along the *a* axis. As shown in Fig. 4, the silver ions are surrounded by five (Ag1, Ag3) and four (Ag2) oxygen atoms with distances from 217.2 (4) to 270.3(4) pm (av. 248.5 pm), 226.5(3) to 254.1(3) pm (av. 242.5 pm), and from 234.6(3) to 304.5(4) pm (av. 255.5 pm)), for Ag1, Ag2, and Ag3, respectively. According to the ECoN values (effective coordination numbers), [17] the coordination numbers of the silver ions in $Ag_3B_5O_9$ (CN=4, 5) are within the range of coordination numbers found in other phases of the system Ag-B-O (CN=2 [7]-8 [12]). The value for the shortest (Ag– O_{min}) as well as for the longest (Ag-O_{max}) Ag-O bond length within the coordination spheres of the silver ions is comparable to other silver borates. $(Ag-O_{min}=211.1(2)$ [8] to 237.2(4) pm [12], Ag–O_{max}=212.5(7) [7] to 304.6(6) pm [12]). The average Ag-O distances for Ag1, Ag2, and Ag3 are 248.5, 242.5, and 255.5 pm, respectively. Other phases show average values in the same region (212.5 [7] to 278.1 pm [6]). Compared to the recently discovered high-pressure phase AgB₃O₅, the surrounding of the silver ions in $Ag_3B_5O_9$ resembles the ambient-pressure phases rather than AgB_3O_5 . Solely the Ag-O_{min} and Ag-O_{max} value of the ion Ag3 (234.6(3) and 304.5(4) pm) are comparable to the values in AgB₃O₅ (237.2(4) and 304.6(6) pm) [12]. The shortest distances between the silver ions are 286.56(7) (Ag1...Ag3), 294.89(8) (Ag1...Ag2), 301.47(9) (Ag2...Ag3), and 324.73(8) pm (Ag1...Ag2) compared to 295.4(2) and 306.2(1) pm in AgBO₂ [6] and Ag₃BO₃-II [8], respectively. The first distance is even shorter than the distance found in metallic silver (289 pm). These short distances clearly indicate the presence of argentophillic interactions, which also explain the color of the crystals [11]. A representation of the resulting silver substructure is displayed in Fig. 5. With the bond-length/bond-strength – (ΣV) [18] and the Chardi-(charge distribution in solids, ΣQ) [19] concepts, the bond-valence sums for Ag₃B₅O₉ were calculated. The formal ionic charge of each atom fits to the expected values within the limits of the concepts (see Table 6).

Table 1	1
---------	---

Crystal data and	structure refinement	of Ag ₃ B ₅ O ₉	(standard	deviations in	parentheses).
------------------	----------------------	--	-----------	---------------	---------------

Empirical formula Molar mass (g/mol) Crystal system Space group	$Ag_3B_5O_9$ 521.66 Orthorhombic $P2_12_12_1$ (no. 19)
Single crystal diffractometer Radiation Single crystal data	Enraf-Nonius Kappa CCD MoK α (λ =71.073 pm) (graded multilayer X-ray optics)
a (pm)	674.7(2)
b (pm)	943.5(2)
<i>c</i> (pm)	1103.5(2)
$V(nm^3)$	0.7025(2)
Formula units per cell	Z=4
Calculated density (g/cm ³)	4.932
Crystal size (mm ³)	$0.037\times0.035\times0.020$
Temperature (K)	293(2)
Absorption coefficient (mm ⁻¹)	8.316
F(000)	952
θ range (°)	2.84–37.72
Range in <i>hkl</i>	$-11 \ge h \ge 11, -13 \ge k \ge 16, -18 \ge l \ge 18$
Total no. of reflections	$10,856 \ (R_{int}=0.0560)$
Independent reflections	$3,740 \ (R_{\sigma} = 0.0579)$
Reflections with $I \ge 2\sigma(I)$	3,150
Data / parameters	3,740/154
Absorption correction	Multi-scan (Scalepack [23])
Goodness-of-fit on F_i	1.052
Flack-parameter	-0.05(3)
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0367
Final <i>R</i> indices (all data)	WK2=0.0557 R1=0.0496 WP2=0.0597
Largest diff. peak and hole $(e/Å^3)$	1.341/-1.633

Download English Version:

https://daneshyari.com/en/article/1331609

Download Persian Version:

https://daneshyari.com/article/1331609

Daneshyari.com