

SOLID STATE CHEMISTRY

Journal of Solid State Chemistry 179 (2006) 3824-3830

www.elsevier.com/locate/jssc

Synthesis and structure of $In(IO_3)_3$ and vibrational spectroscopy of $M(IO_3)_3$ (M = Al, Ga, In)

Nhan Ngo^a, Katrina Kalachnikova^a, Zerihun Assefa^{b,c}, Richard G. Haire^c, Richard E. Sykora^{a,c,*}

^aDepartment of Chemistry, University of South Alabama, Mobile, AL 36688, USA
^bDepartment of Chemistry, North Carolina A and T State University, Greensboro, NC 27411, USA
^cChemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Received 19 July 2006; received in revised form 22 August 2006; accepted 23 August 2006 Available online 30 August 2006

Abstract

The reaction of Al, Ga, or In metals and H_5IO_6 in aqueous media at $180\,^{\circ}\text{C}$ leads to the formation of Al(IO₃)₃, Ga(IO₃)₃, or In(IO₃)₃, respectively. Single-crystal X-ray diffraction experiments have shown In(IO₃)₃ contains the Te₄O₉-type structure, while both Al(IO₃)₃ and Ga(IO₃)₃ are known to exhibit the polar Fe(IO₃)₃-type structure. Crystallographic data for In(IO₃)₃, trigonal, space group R_3^3 , $a = 9.7482(4)\,\text{Å}$, $c = 14.1374(6)\,\text{Å}$, $V = 1163.45(8)\,Z = 6$, R(F) = 1.38% for 41 parameters with 644 reflections with $I > 2\sigma(I)$. All three iodate structures contain group 13 metal cations in a distorted octahedral coordination environment. $M(IO_3)_3$ (M = Al, Ga) contain a three-dimensional network formed by the bridging of Al^{3+} or Ga^{3+} cations by iodate anions. With In(IO₃)₃, iodate anions bridge In³⁺ cations in two-dimensional layers. Both materials contain distorted octahedral holes in their structures formed by terminal oxygen atoms from the iodate anions. The Raman spectra have been collected for these metal iodates; In(IO₃)₃ was found to display a distinctively different vibrational profile than Al(IO₃)₃ or Ga(IO₃)₃. Hence, the Raman profile can be used as a rapid diagnostic tool to discern between the different structural motifs.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Indium iodate; Aluminum iodate; Gallium iodate; Hydrothermal; Single crystal X-ray diffraction; Raman spectroscopy; Layered compound; Structure determination

1. Introduction

Metal iodates have received significant attention because of their nonlinear-optical properties [1–11], and have been shown to exhibit piezoelectric, [4] pyroelectric [4–8], and second-harmonic generation properties [9–11]. Numerous reports have also focused on the aluminum iodate systems [12–25]. The chiral Al(IO₃)₃·2HIO₃·6H₂O has been structurally characterized by both X-ray diffraction [12,13] and spectroscopic measurements [14,15] and its piezoelectric, elastic, and optical properties [16,17] have also been investigated. This material was found to

E-mail address: rsykora@jaguar1.usouthal.edu (R.E. Sykora).

exhibit a longitudinal piezoelectric effect ten times larger than α -quartz [17]. Upon heating to 340 °C, Al(IO₃)₃· 2HIO₃· 6H₂O decomposes to the anhydrous Al(IO₃)₃ [13], which was just recently characterized structurally by single-crystal X-ray diffraction [18] and determined to be acentric. A mixed anion aluminum iodate, Al(IO₃)₂(NO₃)· 6H₂O has also been reported [15,19,20] and its structural characterization revealed the presence of the hydrated cations Al[(H₂O)₆]³⁺ [19], which are also observed in Al(IO₃)₃· 2HIO₃· 6H₂O [12,13] and Al(IO₃)₃· 8H₂O [21,22]. Of these materials, only the anhydrous Al(IO₃)₃ contains iodate anions coordinated directly to the aluminum cations [18].

Very recently, the structure of Ga(IO₃)₃ was reported to be isostructural with Al(IO₃)₃ [26], but structural data for the iodate of indium has not been reported previously. We have recently begun to prepare single crystals of these

^{*}Corresponding author. Department of Chemistry, University of South Alabama, Room 223, The Chemistry Building, 307 University Boulevard, Mobile, AL 36688-0002, USA. Fax: +12514607359.

elements' iodates, and investigated their structures using both X-ray diffraction and Raman vibrational techniques. Herein, we report the hydrothermal syntheses and Raman vibrational profiles of the group 13 iodates, $M(IO_3)_3$ (M = Al, Ga, In). In addition, the structure of $In(IO_3)_3$ was determined using single crystal X-ray diffraction and it is reported here.

2. Experimental

2.1. Materials and methods

Materials for the syntheses were Al (foil, 99 + %, Alfa-Aesar), Ga (ingot, 99.99%, Alfa-Aesar), In (ingot, 99.99%, Alfa-Aesar), and H₅IO₆ (98%, Alfa-Aesar). All materials were used as received. The reactions given below produced the highest yields and best quality of the respective compounds.

2.2. Synthesis of $M(IO_3)_3$ (M = Al, Ga, In)

Synthesis of In(IO₃)₃ involved combining In (4.88 mg, $0.0425 \, \text{mmol})$ and $H_5 IO_6$ (32.11 mg, $0.1409 \, \text{mmol})$ in a quartz reaction vessel. After the addition of 0.3 mL of water, the reaction vessel was sealed and heated in a box furnace to 180 °C, where the reaction proceeded under autogenously generated pressure. After 70 h, the furnace was cooled at 10 °C/h to 100 °C, turned off, and allowed to cool to 20 °C. The reaction produced colorless, single crystals of In(IO₃)₃ as the sole crystalline product. The syntheses of Al(IO₃)₃ and Ga(IO₃)₃ were carried out in a similar manner, except that Al (2.16 mg, 0.0801 mmol) and H₅IO₆ (51.45 mg, 0.2257 mmol), or Ga (3.07 mg, $0.0440 \,\mathrm{mmol})$ and $H_5 IO_6$ (30.32 mg, 0.1330 mmol) were used for the syntheses. The products of the reactions were colorless, single crystals of Al(IO₃)₃ and Ga(IO₃)₃. The reactions listed above produced the metal iodates with nearly quantitative yields.

2.3. Crystallographic studies

Crystals of Al(IO₃)₃, Ga(IO₃)₃, and In(IO₃)₃ (dimensions of $0.240 \times 0.028 \times 0.028$ mm, $0.027 \times 0.036 \times 0.032$ mm, and $0.160 \times 0.160 \times 0.058$ mm, respectively) were selected and mounted on quartz fibers with epoxy and aligned on a Bruker SMART APEX CCD X-ray diffractometer with a digital camera. Unit cell determinations on Al(IO₃)₃ and Ga(IO₃)₃ confirmed the reported structures for these materials [18,26]. For In(IO₃)₃, intensity measurements were performed using graphite monochromated, Mo $K\alpha$ radiation from a sealed tube using a monocapillary collimator. The intensities and positions of reflections of a sphere were collected by a combination of 3 sets of exposure frames. Each set had a different ϕ angle for the crystal, and each exposure covered a range of 0.3° in ω . A total of 1800 frames were collected with an exposure time per frame of 20 s for the crystal of In(IO₃)₃.

Determination of the integrated intensities and the global cell refinement were performed with the Bruker SAINT (v 6.02) software package using a narrow-frame, integration algorithm. A face-indexed absorption correction was applied with the program XPREP [27], followed by a semi-empirical absorption correction using SADABS [28]. SADABS is routinely used to make incident beam and decay corrections on area-detector X-ray diffraction data [29]. The program suite SHELXTL (v 5.1) was used for space group determination (XPREP), direct methods structure solution (XS), and least-squares refinement (XL) [27]. The final refinement for In(IO₃)₃ included anisotropic displacement parameters for all atoms and a secondary extinction parameter. Selected crystallographic details are listed in Table 1 and the final positional parameters are located in Table 2. Further details of the crystal structure investigation for In(IO₃)₃ may be obtained from Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: (+49)7247-808-666; e-mail: crysdata@fiz-karlsruhe. de, http://www.fiz-informationsdienste.de/en/DB/icsd/depot anforderung.html) on quoting the deposition number CSD-416802.

2.4. Raman spectroscopy

Raman spectroscopy was performed using an argon-ion laser (Coherent, model 306) and a double-meter spectrometer (Jobin-Yvon Ramanor model HG.2S). The resolution of the monochromator at 514.5 nm is 0.5 cm⁻¹. The monochromator is interfaced with a personal computer; scanning and data collections are controlled by LabSpec (version 3.04) software. Signal detection was acquired with a water-cooled photo-multiplier tube (Hamamatsu R636).

Table 1 Crystallographic data for In(IO₃)₃

Compound	In(IO ₃) ₃
Formula mass (amu)	639.52
Color and habit	Colorless, hexagonal plate
Crystal system	Trigonal
Space group	R3 (No. 148)
a (Å)	9.7482(4)
c (Å)	14.1374(6)
$V(\mathring{A}^3)$	1163.45(8)
Z	6
$T(\mathbf{K})$	173
λ (Å)	0.71073
$2\theta_{\rm max}$ (°)	56.56
$ \rho_{\rm calcd} \ ({\rm gcm}^{-3}) $	5.477
$\mu(\text{Mo }K\alpha) \text{ (cm}^{-1})$	150.13
Reflections collected	3842
Independent reflections	644 [R(int) = 0.0223]
Data/restraints/parameters	644/0/41
$R(F)$ for $F_0^2 > 2\sigma(F_0^2)^a$	0.0138
$Rw(F_o^2)^b$	0.0341

$${}^{a}R(F) = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|.$$

$${}^{b}R_{w}(F_{o}^{2}) = \left[\sum \left[w(F_{o}^{2} - F_{c}^{2})^{2} \right] / \sum wF_{o}^{4} \right]^{1/2}.$$

Download English Version:

https://daneshyari.com/en/article/1331767

Download Persian Version:

https://daneshyari.com/article/1331767

Daneshyari.com