

Contents lists available at SciVerse ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

Next neighbors effect along the Ca–Sr–Ba-åkermanite join: Long-range vs. short-range structural features

Michele Dondi^a, Matteo Ardit^{b,*}, Giuseppe Cruciani^b

^a Institute of Science and Technology for Ceramics (ISTEC–CNR), via Granarolo 64, 48018 Faenza, Italy ^b Department of Physics and Earth Sciences, University of Ferrara, via Saragat 1, 44100 Ferrara, Italy

ARTICLE INFO

Article history: Received 9 December 2012 Received in revised form 22 February 2013 Accepted 8 March 2013 Available online 16 March 2013

Keywords: Åkermanite Probe cation Local structure X-ray powder diffraction Electronic absorption spectroscopy Structural relaxation

ABSTRACT

An original approach has been developed herein to explore the correlations between short- and longrange structural properties of solid solutions. X-ray diffraction (XRD) and electronic absorption spectroscopy (EAS) data were combined on a (Ca,Sr,Ba)₂(Mg_{0.7}Co_{0.3})Si₂O₇ join to determine average and local distances, respectively. Instead of varying the EAS-active ion concentration along the join, as has commonly been performed in previous studies, the constant replacement of Mg²⁺ by a minimal fraction of a similar size cation (Co^{2+}) has been used to assess the effects of varying second-nearest neighbor cations (Ca, Sr, Ba) on the local distances of the first shell. A comparison between doped and un-doped series has shown that, although the overall symmetry of the Co-centered T1-site was retained, greater relaxation occurs at the CoO₄ tetrahedra which become increasingly large and more distorted than the MgO₄ tetrahedra. This is indicated by an increase in both the quadratic elongation (λ_{TI}) and the bond angle variance (σ_{11}^2) distortion indices, as the whole structure expands due to an increase in size in the second-nearest neighbors. This behavior highlights the effect of the different electronic configurations of Co^{2+} (3d⁷) and Mg²⁺ (2p⁶) in spite of their very similar ionic size. Furthermore, although the overall symmetry of the Co-centered T1-site is retained, relatively limited (< 10 deg) angular variations in O-Co²⁺-O occur along the solid solution series and large changes are found in molar absorption coefficients showing that EAS Co²⁺-bands are highly sensitive to change in the local structure.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

A fundamental problem in determining the chemical and physical properties of a crystal structure is the precise distribution of the atoms in its lattice. In early X-ray diffraction applications, Vegard observed that the lattice constant linearly scales with composition in many cubic ionic salts [1,2]. In the hypothetical case of a solid solution which obeys Vegard's law, it is reasonable to assume that mean atomic bond distances also vary linearly as a function of composition. Therefore, the constituent atoms of every compound belonging to the solid solution will be located at a lattice site whose size stems from the composition-averaged structure, ignoring any local displacement (i.e. the structure will follow the virtual-crystal approximation model, VCA) [3]. On the other hand, almost all compounds belonging to a solid solution deviate from the VCA model, as their properties differ from the linearity predicted by Vegard's law. Since no single experimental method can determine an average long-range crystal structure and, at the same time, give indications on local distances between the central ion and its surrounding atoms, the long-range vs. shortrange properties of a crystal structure along a binary join have to

* Corresponding author. *E-mail addresses:* rdtmtt@unife.it, harditster@gmail.com (M. Ardit). be obtained through a combination of diffraction and spectroscopy techniques [4–6].

When access to large scale facilities is not possible and hence EXAFS cannot be performed, electronic absorption spectroscopy (EAS) is the most common technique applied to gain local structural information [7–12]. Local metal–oxygen distances in a solid solution investigated through EAS are derived by means of the crystal field parameter 10*Dq*. According to the crystal field theory [13,14], in an oxygen-based structure, the 10*Dq* value depends on the mean metal–oxygen bond distances $\langle M$ –O \rangle through the relationship:

$$10Dq = 5/3 \times Q \times \langle r \rangle^4 \langle M - O \rangle^{-5} \tag{1}$$

where both the effective charge on ligands, Q, and the average radius of *d* orbitals, $\langle r \rangle$, can be considered constant for the same metal ion in the same ligand environment [7,13–15]. The local ion-oxygen distance, $\langle M-O \rangle_x^{local}$, can be calculated for each term *x* of a $M_xO-M'_{1-x}O$ solid solution by [5–7]:

$$\langle M-O \rangle_{x}^{\text{local}} = \langle M'-O \rangle \cdot \left[(10DqM') / (10DqM)_{x} \right]^{1/5}$$
(2)

In this study, a first attempt has been made to obtain information on the deviation between *long-range* and *short-range* properties using a "*probe cation*". The solid solution here chosen is based on compounds with a melilite-type structure which is characterized by a tetragonal lattice (space group $P-42_1m$), with the general formula ^[8] X_2 ^[4]T1^[4] $T2_2A_7$ (where X is a large mono- to tri-valent

^{0022-4596/\$ -} see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jssc.2013.03.020

Table 1

Quantitative phase analysis, agreement factors and refinement details, unit-cell parameters, mean metal-oxygen bond distances, bond angles, and tetrahedral distortion indices for the $(Ca,Sr,Ba)_2(Mg_{0.7}Co_{0.3})Si_2O_7$ samples. Standard deviations are reported in parentheses.

Nominal ionic radius of the cations hosted at the X site, ir_X (Å) 1.12 1.19 1.26 1.34 1.38 Sample label Ca CaSr Sr SrBa Sr0.5Ba1.5 Main phases space group $P_{-42,m}$ $P_{-42,m}$ $P_{-42,m}$ $P_{-42,m}$ $P_{-42,m}$	1.42 Ba-S ^a P-42 ₁ m	1.42 Ba F ^a
1.12 1.19 1.26 1.34 1.38 Sample label Ca CaSr Sr SrBa Sr_0_5Ba_{1.5} Main phases space group $P_{-}42$, m	1.42 Ba-S ^a <i>P</i> -42 ₁ <i>m</i>	1.42 Ba F ^a
Sample labelCaCaSrSrBa $Sr_{0.5}Ba_{1.5}$ Main phases space group $P_{-}42.m$ $P_{-}42.m$ $P_{-}42.m$ $P_{-}42.m$	Ba-S ^a P-42 ₁ m	
Main phases space group $P-42.m$ $P-42.m$ $P-42.m$ $P-42.m$ $P-42.m$	$P-42_1m$	Bd-E
וון אר היין און אר א אר און אר און		$P-42_{1}m$
Quantitative phase analysis (mol)		
Main phases 92.52(4) 100.00 97.19(1) 88.24(3) 91.59(2)	-	-
Other		
CaMgSi ₂ O ₆ 7.48(5) – – – – –	-	-
SrSiO ₃ – – 2.81(1) – –	-	-
Sr ₂ SiO ₄ – – – 11.76(3) 8.41(3)	-	-
Agreement factors and refinement details		
Chi ² 1.524 1.485 1.438 2.227 2.080	-	-
<i>R</i> _{wp} 0.1278 0.1375 0.1185 0.1118 0.1140	-	-
R _p 0.0965 0.1006 0.0857 0.0777 0.0761	-	-
No. of variables 63 41 46 63 63	-	-
R(F) 0.0543 0.0446 0.0307 0.0306 0.0265	-	-
R(F ²) 0.0889 0.0737 0.0574 0.0509 0.0449	-	-
No. of reflections 364 356 284 415 422	-	-
Unit-cell parameters		
a=b(Å) 7.8325(3) 7.9291(2) 8.0161(1) 8.1070(1) 8.1532(1)	8.2036(4)	8.1709(7)
c (Å) 5.0124(2) 5.0837(1) 5.1648(1) 5.2666(1) 5.3273(1)	5.4058(4)	5.3374(7)
$V(\hat{A}^3)$ 307.51(3) 319.62(2) 331.88(1) 346.14(1) 354.13(2)	363.81(2)	356.34(6)
Mean metal–oxygen bond distances (Å)		
(X-O) 2.580(4) 2.624(4) 2.673(4) 2.732(6) 2.758(7)	2.793(4)	2.763(5)
⟨ <i>T</i> 1−0⟩ 1.915(1) 1.929(2) 1.942(1) 1.952(2) 1.960(2)	1.966(4)	1.964(4)
(Si-O) 1.616(2) 1.618(1) 1.617(2) 1.620(2) 1.626(2)	1.635(4)	1.633(5)
Bond angles (deg)		
03-77-03 [x4] 108.02(4) 106.64(5) 105.22(4) 104.24(7) 103.89(7)	103.8(1)	103.9(1)
03- <i>T</i> 1-03 [<i>x</i> 2] 112.42(7) 115.29(12) 118.36(8) 120.54(17) 121.33(17)	121.6(2)	121.2(2)
(O3-T1-O3) 109.49(5) 109.52(8) 109.60(6) 109.67(11) 109.70(11)	109.7(1)	109.7(1)
T1-03-Si 118.90(10) 120.99(14) 122.85(11) 124.13(20) 124.63(21)	124.6(2)	123.8(2)
Tetrahedral distortion indices ^b		
λ_{TI} 1.0013 1.0052 1.0124 1.0194 1.0224	1.0232	1.0220
$\sigma_{T1}^2 (\text{deg}^2)$ 5.17 19.95 46.12 70.89 81.26	84.11	79.77
$\lambda_{\rm Si}$ 1.0103 1.0088 1.0079 1.0059 1.0065	1.0065	1.0081
$\sigma_{\rm Si}^2$ (deg ²) 44.48 38.38 34.00 26.06 28.29	28.26	35.92

^a Data reported for samples labeled as Ba–S and Ba–E refer to those achieved from the single-crystal refinements of tetragonal Ba₂MgSi₂O₇ and Ba₂CoSi₂O₇, respectively [32,33]. ^b Both tetrahedral quadratic elongation (λ) and bond angle variance (σ^2) were computed according to Robinson et al. [24].

cation: Na, Ca, Sr, Ba, Y,...; *T1* and *T2* are small di- to tetra-valent cations: T1 = Be, Mg, Al, Co, Zn,...; T2 = Al, Si, Ge,...; and A is an anion, frequently O, but also F or S). The melilite structure can be described as sheets of linked tetrahedra ($T2_2O_7$ dimers cornersharing with four-coordinated *T1* cations) connected together by X cations accommodated in a distorted eight-coordinated antiprismatic polyhedron [16,17].

Differently to what is commonly put forward in the literature, where increasing concentrations of EAS-active cations (i.e. "chromophores" which exhibit electronic absorption transitions in the UV-visible-NIR spectrum) replace the starting cation in the same polyhedron (e.g. usually octahedron or tetrahedron) [7–12,18–20], in the present study, the long- vs. short-range mismatch has been evaluated by studying the structural properties along a Ca-Sr-Baåkermanite solid solution characterized by a constant concentration of Co^{2+} (i.e. the "probe cation") which substitutes for 0.3 mol of Mg^{2+} at T1 tetrahedron. In this way, local information on the effect of the second-nearest neighbors, induced by the replacement of Ca^{2+} with bigger ions (Sr^{2+} and Ba^{2+}) at X site, will be gained using an innovative, simple method by investigating the (Ca,Sr,Ba)₂(Mg_{0,7}Co_{0,3})Si₂O₇ join as a case-study by means of an Xray powder diffraction (XRPD) and electronic absorption spectroscopy (EAS) combined approach.

2. Experimental section

2.1. Sample preparation

Six polycrystalline samples with a melilite structure were obtained through solid state reaction synthesis to cover all the Ca₂(Mg_{0.7}Co_{0.3})Si₂O₇–Sr₂(Mg_{0.7}Co_{0.3})Si₂O₇–Ba₂(Mg_{0.7}Co_{0.3})Si₂O₇ solid solution. One further composition was synthesized for reference: Ca₂CoSi₂O₇ (Co-åkermanite).

Stoichiometric quantities of high purity carbonates (CaCO₃, SrCO₃, and BaCO₃) and oxides (MgO, Co₃O₄, and SiO₂), used as raw materials, were mixed in ethanol, dried in the oven at 105 °C, pulverized in an agate mortar and pelletized using a piston cylinder press till ~80 MPa. Subsequently, each pellet was calcined in a sealed alumina crucible in an electric kiln with static air at a maximum temperature of 1200 °C for several hours applying a heating rate of 3 °C/min. Calcined samples underwent pulverization in an agate mortar until passing through a 50 μ m sieve.

2.2. XRD data collection and structural refinements

Data collection was performed at room temperature on a Bruker D8 Advanced diffractometer equipped with an Si(Li) solid-state Download English Version:

https://daneshyari.com/en/article/1332257

Download Persian Version:

https://daneshyari.com/article/1332257

Daneshyari.com